SimMechanics For Use with Simulink ${ }^{\circledR}$

Modeling

Simulation

Implementation

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimMechanics User's Guide

© COPYRIGHT 2001-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:	December 2001	Online only	Version 1 (Release 12.1+)
July 2002	First printing	Revised for Version 1.1 (Release 13)	
November 2002	Online only	Revised for Version 2.0 (Release 13+)	
June 2004	Second printing	Revised for Version 2.2 (Release 14)	

Physical Modeling Software Acknowledgment

The following applies to the graphviz code used within the Physical Modeling import utility import_physmod.

This product contains certain software code or other information ("AT\&T Software") proprietary to AT\&T Corp. ("AT\&T"). The AT\&T Software is provided to you "AS IS". YOU ASSUME TOTAL RESPONSIBILITY AND RISK FOR USE OF THE AT\&T SOFTWARE. AT\&T DOES NOT MAKE, AND EXPRESSLY DISCLAIMS, ANY EXPRESS OR IMPLIED WARRANTIES OF ANY KIND WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WARRANTIES OF TITLE OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS, ANY WARRANTIES ARISING BY USAGE OF TRADE, COURSE OF DEALING OR COURSE OF PERFORMANCE, OR ANY WARRANTY THAT THE AT\&T SOFTWARE IS "ERROR FREE" OR WILL MEET YOUR REQUIREMENTS.

Unless you accept a license to use the AT\&T Software, you shall not reverse compile, disassemble or otherwise reverse engineer this product to ascertain the source code for any AT\&T Software.
© AT\&T Corp. All rights reserved. AT\&T is a registered trademark of AT\&T Corp.

Introducing SimMechanics

1

What Is SimMechanics? . 1-2
SimMechanics and Physical Modeling . 1-2
What's in This Chapter . 1-2
Getting Online Help for SimMechanics 1-3
Related Products . 1-4
Requirements for SimMechanics . 1-4
Other Related Products . 1-4
Running a Demo Model . 1-6
What This Demo Illustrates . 1-7
Opening the Model . 1-7
Starting the Demo . 1-10
Modifying the Model . 1-11
What Can You Do with SimMechanics? 1-18
Modeling Machines with SimMechanics 1-18
Bodies, Coordinate Systems, Joints, and Constraints 1-19
Sensors, Actuators, and Force Elements 1-20
Simulating and Analyzing Mechanical Motion 1-20
Visualizing and Animating Machines 1-22

Building and Visualizing Simple Machines

2

Introducing the SimMechanics Block Libraries 2-2

Viewing the Blocks . 2-2
Creating SimMechanics Models . 2-7
Essential Steps to Build a Model . 2-7
Essential Steps to Configure and Run a Model 2-9
Building a Simple Pendulum 2-11
The World Coordinate System and Gravity 2-12
Configuring a Ground Block 2-12
Configuring a Body Block 2-14
Configuring a Joint Block 2-20
Adding a Sensor and Starting the Simulation 2-24
Visualizing a Simple Pendulum 2-30
Representing the Bodies 2-31
Visualizing with MATLAB Graphics 2-32
Modeling and Visualizing More Complex Machines 2-35
A Four Bar Mechanism 2-36
Configuring the Mechanical Environment 2-38
Setting Up the Block Diagram 2-40
Configuring the Ground and Joint Blocks 2-42
Configuring the Body Blocks 2-47
Sensing Motion and Running the Model 2-52
For More About the Four Bar Machine 2-57
Representing Motion
3
Kinematics and the Machine's State of Motion 3-2
The State of Motion 3-2
Degrees of Freedom 3-2
For More Information 3-2
Body Motion in SimMechanics 3-3
Reference Frames and Coordinate Systems 3-4
Relating Coordinate Systems in Relative Motion 3-4
Observing Body Motion in Different Coordinate Systems 3-6
Representing Body Translations and Rotations 3-7
How SimMechanics Represents Body Orientation 3-9
Axis-Angle Form 3-9
Quaternion Form 3-10
Rotation Matrix Form 3-10
Euler Angle Form 3-11
Converting Rotation Representations 3-11
Orienting a Body and Its Coordinate Systems 3-15
Setting Up the Test Body 3-15
Rotating The Body and Its CG CS Relative to World 3-17
Rotating the Body Relative to Its Center of Gravity 3-18
Creating and Rotating Body Coordinate Systems 3-20
Modeling Mechanical Systems
4
Modeling Machines 4-2
About SimMechanics Models 4-2
Creating a SimMechanics Model 4-3
Connecting SimMechanics Blocks 4-4
Interfacing SimMechanics Blocks to Simulink Blocks 4-5
Setting SimMechanics Block Properties at the Command Line 4-5
Creating SimMechanics Subsystems 4-6
Creating Custom SimMechanics Blocks with Masks 4-7
Modeling Bodies and Grounds 4-8
Modeling Grounds 4-8
Modeling Rigid Bodies 4-10
Working with Body Coordinate Systems 4-12
Modeling Joints 4-17
About Joints 4-17
Creating a Joint 4-24
Modeling with Massless Connectors 4-26
Modeling with Disassembled Joints 4-30
Cutting Closed Loops 4-33
Modeling Constraints and Drivers 4-35
What Constraints and Drivers Do 4-35
Directionality of Constraints and Drivers 4-36
Solving Constraints 4-36
Restrictions on Using Constraint and Driver Blocks 4-37
Constraint Example: Gear Constraint 4-37
Driver Example: Angle Driver 4-39
Modeling Actuators 4-42
Actuating a Body 4-42
Varying a Body's Mass and Inertia Tensor 4-45
Actuating a Joint 4-47
Actuating a Driver 4-53
Specifying Initial Positions and Velocities 4-53
Modeling Force Elements 4-58
Inserting a Linear Force Between Bodies 4-58
Inserting a Linear Force or Torque Through a Joint 4-60
Customizing Force Elements with Sensor-Actuator Feedback 4-61
Modeling Sensors 4-63
Sensing Body Motions 4-63
Sensing Joint Motions and Forces 4-65
Sensing Constraint Reaction Forces 4-65
Checking Model Validity 4-68
Checking Machine Topology 4-68
Counting Degrees of Freedom 4-71
Running Mechanical Models
5
Running SimMechanics Models in Simulink 5-2
Machine Settings via the Machine Environment Block 5-2
Model-Wide Settings via Simulink 5-2
Configuring a Machine's Mechanical Environment 5-3
The Machine Environment Block 5-3
Setting Gravity 5-3
Choosing Your Machine's Dimensionality 5-4
Setting Assembly Tolerances 5-5
Implementing Constraints 5-5
Analyzing the Motion 5-7
Handling Motion Singularities 5-9
Controlling the Simulation 5-10
Controlling SimMechanics Simulation Diagnostics 5-11
Visualizing Your Machines 5-12
Choosing a Simulink Solver 5-12
Starting the Simulation 5-13
How SimMechanics Works 5-14
Model Validation 5-14
Machine Initialization 5-14
Force Analysis and Motion Integration 5-15
Stiction Mode Iteration 5-15
Troubleshooting Simulation Errors 5-16
Data Validation Errors 5-16
Ground and Body Geometry Errors 5-16
Joint Geometry Errors 5-17
Block Connection and Topology Errors 5-17
Motion Inconsistency and Singularity Errors 5-18
Analysis Mode Errors 5-21
Improving Performance 5-22
Simplifying the Degrees of Freedom 5-22
Adjusting Constraint Tolerances 5-23
Smoothing Motion Singularities 5-24
Changing the Simulink Solver and Tolerances 5-24
Adjusting the Time Step in Real-Time Simulation 5-25
Generating Code 5-26
Using Code-Related Products and Features 5-26
How SimMechanics Code Generation Differs from Simulink 5-28
Using Run-Time Parameters in Generated Code 5-28
Limitations 5-31
Restrictions on Two-Dimensional Simulation 5-32
Restrictions with Generated Code 5-32
Visualizing and Animating Machines
6
Starting SimMechanics Visualization 6-2
Using SimMechanics Visualization 6-3
Creating an External Virtual Reality Client 6-4
Rendering Body Shapes in SimMechanics 6-5
Choosing the Body Shape 6-5
Equivalent Ellipsoids 6-5
Convex Hulls 6-8
Introducing the SimMechanics Visualization Window 6-10
Interpreting the Special SimMechanics Symbols 6-11
Using the Standard MATLAB Graphics Controls 6-12
Accessing the Special SimMechanics Features 6-13
Saving and Recalling Display Settings 6-15
Controlling Machine Displays in SimMechanics 6-17
Highlighting Bodies and Body Blocks 6-17
Changing Machine Display Symbols 6-18
Changing Perspective and Window Size 6-21
Animating SimMechanics Simulations 6-23
Controlling the Simulation from the Window 6-23
Changing the Machine Display Refresh Rate 6-23
Speeding Up the Animation 6-24
Recording and Playing Animations 6-25
Custom Visualization with Virtual Reality 6-27
Creating Virtual Worlds for SimMechanics Models 6-27
Interfacing SimMechanics with Virtual Worlds 6-31
Modeling with Computer-Aided Design
7
Introducing CAD Translation 7-2
Installing the SimMechanics CAD Translator 7-3
Uninstalling the SimMechanics CAD Translator 7-5
Exporting CAD Assemblies into Physical Modeling XML 7-6
Building a CAD Assembly for SimMechanics 7-6
Translating CAD Assemblies into XML 7-10
Getting Help in the CAD Translator Window 7-12
Troubleshooting Assembly Export Problems 7-13
Generating Models from Physical Modeling XML 7-14
Generating Body-Joint CAD-Based Models 7-14
Special Features of CAD-Based Models 7-15
Editing and Completing CAD-Based Models 7-16
Troubleshooting CAD-Based Models 7-18
Exporting a Part 7-20
Viewing the CAD Assembly 7-20
Exporting the CAD Assembly 7-21
Generating the SimMechanics Model 7-21
Designing and Exporting Mates 7-22
Block Diagram Structure of Two-Part Assemblies 7-23
Creating a Six DoF Joint 7-24
Creating a Prismatic Joint 7-25
Creating a Revolute Joint 7-29
Creating an Inplane Joint 7-30
Creating a Spherical-Spherical Massless Connector 7-31
Creating a CAD-Based Robot Arm Model 7-34
Viewing the Robot Arm Assembly 7-34
Exporting the Robot Arm Assembly 7-36
Generating and Completing the Robot Arm Model 7-36
Modeling a Stewart Platform 7-41
Viewing the Stewart Platform Assembly 7-42
Exporting the Stewart Platform Assembly 7-43
Generating the Stewart Platform Model 7-43
Visualizing the Stewart Platform Motion 7-46
Case Studies
8
Dynamics of Mechanical Systems 8-2
Forward and Inverse Dynamics 8-2
Forces and Torques Determine Accelerations 8-3
Finding Forces from Motions 8-6
Kinematics with a Four Bar System 8-7
Inverse Dynamics with a Double Pendulum 8-11
Trimming Mechanical Models 8-16
Unconstrained Trimming of a Spring-Loaded Double Pendulum 8-17
Constrained Trimming of a Four Bar Machine 8-23
Linearizing Mechanical Models 8-28
Open-Topology Linearization: Double Pendulum 8-29
Closed-Loop Linearization: Four Bar Machine 8-34
Blocks - Categorical List 9-2
Modeling Machines, Bodies, and Grounds 9-3
Modeling Degrees of Freedom 9-3
Constraining and Driving Motion 9-4
Actuating and Sensing Motion 9-5
Applying Force Elements 9-5
Additional Useful Blocks 9-5
Blocks - Alphabetical List 9-6
SimMechanics Command Reference
10
Technical Conventions
A
Mechanical Conventions and Abbreviations A-2
Mechanical Units A-3
Bibliography
B

Index

Introducing SimMechanics

SimMechanics models and simulates mechanical systems, together with Simulink ${ }^{\circledR}$ and MATLAB ${ }^{\circledR}$.

What Is SimMechanics? (p. 1-2)	Introduction to SimMechanics and the Physical Modeling environment
Related Products (p. 1-4)	Products you might want to use with SimMechanics
Running a Demo Model (p. 1-6)	A simple conveyor showing how to use SimMechanics blocks in the Simulink environment
What Can You Do with	Survey of what SimMechanics does, including special simulation features
SimMechanics? (p. 1-18)	

What Is SimMechanics?

SimMechanics is a block diagram modeling environment for the engineering design and simulation of rigid body machines and their motions, using the standard Newtonian dynamics of forces and torques.

With SimMechanics, you can model and simulate mechanical systems with a suite of tools to specify bodies and their mass properties, their possible motions, kinematic constraints, and coordinate systems, and to initiate and measure body motions. You represent a mechanical system by a connected block diagram, like other Simulink models, and you can incorporate hierarchical subsystems.

The visualization tools of SimMechanics display and animate simplified representations of 3-D machines, before and during simulation, using the MATLAB Graphics system.

SimMechanics and Physical Modeling

SimMechanics is part of Simulink Physical Modeling, encompassing the modeling and design of systems according to basic physical principles. Physical Modeling runs within the Simulink environment and interfaces seamlessly with the rest of Simulink and with MATLAB. Unlike other Simulink blocks, which represent mathematical operations or operate on signals, Physical Modeling blocks represent physical components or relationships directly.

Note This SimMechanics User's Guide assumes that you already have some experience with building and running models in Simulink.

What's in This Chapter

This chapter introduces you to the capabilities of SimMechanics and its relationship to other MathWorks products:

- "Related Products" on page 1-4
- "Running a Demo Model" on page 1-6
- "What Can You Do with SimMechanics?" on page 1-18

Getting Online Help for SimMechanics

You can get help online in a number of ways to assist you while using SimMechanics.

Using the MATLAB Help System for Documentation and Demos

The MATLAB Help browser allows you to access the documentation and demo models for all the MATLAB and Simulink-based products that you have installed. The online Help includes an online index and search system.

Consult the "Getting Help" section of the Using MATLAB documentation for more about the MATLAB Help system.

Finding Special SimMechanics Help

This User's Guide also includes special reference chapters for use with SimMechanics.

- "Technical Conventions" explains mechanical conventions, abbreviations, and units.
- The "Bibliography" lists external references on mechanics, mechanical simulation, and related topics.
- The "Glossary" explains special terms and phrases used in this guide.

In addition, many SimMechanics demos have Help links represented by the information symbol (i). Click this symbol to open that demo's documentation in the Help browser.

Related Products

The MathWorks provides several products that are especially relevant to the kinds of tasks you can perform with SimMechanics.

Requirements for SimMechanics

You must have the following products installed to use SimMechanics:

- MATLAB 7.0
- Simulink 6.0

SimMechanics Visualization Requirements

The MATLAB Graphics-based visualization feature for SimMechanics requires Silicon Graphics OpenGL ${ }^{\circledR}$ graphics support on your system in order to render and animate machines.

If you choose to visualize your models in virtual reality, you can improve your speed and graphics resolution by adding a graphics accelerator hardware card to your system. Animation of simulations is sensitive to central processor and graphics card speed and memory. Experiment to find a reasonable compromise between quality and speed for your system.

Support for Recorded MATLAB Graphics Animations

You can record simulation animations in Microsoft Audio Video Interleave ${ }^{\circledR}$ (AVI) format using the MATLAB Graphics-based visualization feature of SimMechanics. To play these recorded AVI files, you need an AVI-compatible video player. MATLAB has an internal movie player compatible with AVI.

You can also use an external AVI-compatible player, such as Microsoft's Windows Media Player, Apple's QuickTime, or RealNetworks' RealOne Player.

Other Related Products

The related products listed in the SimMechanics product page at the MathWorks Web site include toolboxes and blocksets that extend the capabilities of MATLAB and Simulink. These products will enhance your use of SimMechanics in various applications.

The Physical Modeling Product Family

In addition to SimMechanics, the Physical Modeling product family includes SimPowerSystems, for modeling and simulating electrical power systems. Use these products together to model physical systems in Simulink.

For More Information About MathWorks Products

For more information about any MathWorks software products, see either

- The online documentation for that product if it is installed
- The MathWorks Web site at www. mathworks . com; see the "Products" section.

Running a Demo Model

This demo model uses a few blocks in the library to simulate a simple machine with feedback control. You will see how SimMechanics implements the model in conjunction with standard Simulink features.

The demo model simulates a conveyor belt loading mechanism. A simple controller (not shown), with a sensor and an actuator, guides the mechanism with a saturation limit and anti-windup logic for the applied torque. The controller is user-adjustable and sets the stopping point for the pusher.

Conveyor Loader Mechanism

What This Demo Illustrates

The conveyor mechanism demo illustrates some important features of SimMechanics:

- Representing bodies and degrees of freedom with Body and Joint blocks, respectively
- Using SimMechanics blocks with normal Simulink blocks
- Feeding Simulink signals to and from SimMechanics blocks with Actuator and Sensor blocks, respectively
- Encapsulating groups of blocks into subsystems
- Visualizing and animating a machine by its component bodies

Caution You might want to make modifications to this demo model. To avoid errors,

- Do not attempt to connect Simulink signal lines directly to SimMechanics blocks other than Actuators and Sensors.
- Keep the collocation of the Body coordinate system origins on either side of each assembled Joint to within assembly tolerances.

Saving modified demo models in a different directory from the demos is recommended.

Opening the Model

You can open the demo model in several ways. Here is the general procedure for starting SimMechanics demos from the Start button on the lower left of the MATLAB desktop:

1 Click the Start button.
2 In the pop-up menu, select Simulink, then SimMechanics, and then Demos.

This opens the MATLAB Help browser with Demos selected in the left Help Navigator pane.

3 Double-click Conveyor Mechanism from the list of models in the list on the left or on the right.

Alternatively, you can open the same MATLAB Demos window by entering demos at the MATLAB command line.

To get started quickly with this specific demo, you can use either of these steps:

- Enter mech_conveyor at the MATLAB command line.
- Online Help users can click mech_conveyor here.

The Block Diagram Model

The block diagram model opens in a model window.

What the Model Contains

Here are some critical features of the model:

- Ignore the Position Controller, Joint Sensor, and Joint Actuator blocks for a moment. Note that the loading mechanism follows the tree of bodies and joints shown in the Conveyor Loader Mechanism figure on page 1-6:
- There are four rotating link bodies and one sliding pusher body, as well as three ground points on the immobile mounting represented by Ground blocks. Double-click the Body and Ground blocks to see their dialog boxes.
- The pusher slides and the links rotate relative to one another and to the ground points on the mounting. There are seven apparent degrees of freedom (DoFs) in the machine, represented by seven Joints, but the geometry constrains the motion to one actual DoF. Double-click the Revolute blocks to see how rotational DoFs are expressed in their dialog boxes.
- The Prismatic block expresses the linear motion of Pusher relative to Ground_2. The Revolute block expresses the angular motion of Link4 (the crank of the whole mechanism) relative to Ground_1.
- The Joint Sensor detects the position of Pusher via the Prismatic block. The Joint Actuator applies torque to Link4 via the Revolute block. Double-click the Sensor and Actuator blocks to view how the machine motions and forces/torques are transformed into Simulink signals.
- The Position Controller subsystem converts the Pusher position information into a feedback signal to actuate Revolute and thus Link4. You can open the Position Controller block to view this subsystem, which is made of normal Simulink blocks.

- The Reference Position block gives you control over the stopping position of the pusher by modulating the control signal that actuates Revolute.
Maintaining the initial pusher position requires a fixed torque on Revolute.
- Open the Scope block. You can view both the Pusher position in millimeters (mm) relative to Ground_2 as the Measured Position plot and the torque in Newton-meters ($\mathrm{N}-\mathrm{m}$) applied to Link4 relative to Ground_1 as the Torque plot.

Starting the Demo

You can now run the model as it is when you first open it:
1 In the Simulation menu, select Configuration Parameters. The Configuration Parameters dialog box appears. Select the Solver node:
a The default Stop time is inf, so the simulation keeps running once you start it. You should leave it at inf and stop the simulation manually the first few times you run it.

Later you can apply a finite stop time (in seconds) if you want.
b Leave the Solver options entries at default values and close the box.

2 From the Simulation menu, select Start. In Microsoft Windows, you can also click the Start button in the model window toolbar.

The measured position of the pusher and the torque applied to maintain that position start and remain essentially constant in the Scope plots. The applied torque is adjusted to maintain the initial pusher position.

3 To see greater detail at the simulation start, stop the simulation before the time passes 20 seconds and zoom in on the Scope plots.

Modifying the Model

Here are two modifications of the demo you can try. One illustrates the simple user-driven controller you can adjust to change the motion of the pusher. The other illustrates a powerful feature of SimMechanics, visualization of a machine and animation of its simulated motion.

To make these modifications, it is best to close and restart the demo.

Changing the Pusher Reference Position

The Reference Position block is actually a Simulink Slider Gain block (from the Simulink Math Library) and controls where the pusher comes to rest.

You can adjust the Reference Position block to change where the pusher stops:
1 Open the Reference Position block. You see an adjustable slider to set the position of the pusher's rest point.

2 Enter values in the Low and High fields to set the lower and upper limits of the allowed slider range. The defaults in this demo are 0 and 0.2 , with implied units of meters (m).

3 Enter a value in the central field to set the pusher stopping point, which you can also adjust by clicking and dragging the slider between the lower and upper limits. The default is 0 (meters).

You can apply changes to the reference position to the simulation in two ways:

- Reset the Reference Position block first, then start the demo. You see the pusher trajectory track differently now, toward the new stopping point. For example, resetting the Reference Position to 0.1 and restarting the demo produces these Scope plots, with Autoscale and zooming applied. The asymptotic measured position now tends to 100 mm (0.1 m), and the torque applied to keep the pusher there has changed:

- Start the demo with the Reference Position block open and move the slider up and down as the simulation runs. Watch the Scope. The measured position and necessary torque change to follow the new reference position.

Visualizing and Animating the Conveyor

You can visualize the conveyor mechanism as a static machine and animate the simulation as well, by opening the special visualization window built into SimMechanics. This window is based on MATLAB Graphics.

The SimMechanics visualization window lets you display the bodies of the machine in two possible abstract representations:

- Equivalent ellipsoids use the inertia tensors and masses of the bodies. Each body has a unique homogeneous ellipsoid equivalent to it in mass and inertia tensor.
- Convex hulls use the attached Body coordinate systems (CSs) of the bodies. A body must have at least four non-coplanar Body CS origins to enclose a convex hull with nonzero volume. If the Body has fewer than four Body CS
origins or if the origins are coplanar or collinear or coincident, SimMechanics visualization renders it with simpler figures (triangle, line, or point).

Convex Hulls. First try visualizing the conveyor with bodies rendered as convex hulls:

1 From the Simulation menu, select Configuration Parameters. The Configuration Parameters dialog box appears.

2 Select the SimMechanics node. In the Visualization area, select the Update machine visualization on update diagram and Animate machine during simulation check boxes.

3 Leave the other defaults as they are and close the dialog. From the Edit menu, select Update Diagram.

A MATLAB Graphics window appears, displaying the conveyor machine at rest in its initial state.

The bodies are rendered in the default representation, as convex hulls. The bodies and Body coordinate system axis triads are also displayed as defaults.

4 Change Reference Position to a nonzero value such as 0.1 or 0.2.
5 Restart the simulation. The window animates the machine in motion. You can compare this motion to the plots in the scope.

6 Click a body in the visualization window. The model window comes back into focus with the corresponding Body block highlighted in color.

7 Open the special SimMechanics menu in the MATLAB Graphics menu bar.
Here, you can reconfigure the special display properties for machines:
bodies, Body CS axis triads, colored fill-in body surface patches connecting Body CSs on the same body, and user viewpoint orientation.

8 Leave the visualization window open for the next set of steps.

Equivalent ellipsoids. Now visualize the conveyor with bodies rendered as ellipsoids:

1 From the special SimMechanics menu at the top of the visualization window, select Ellipsoids (so that a check mark appears beside the menu entry) and deselect Convex Hulls (so that the check mark beside the menu entry vanishes).

The machine display in the visualization window changes. The conveyor machine appears at rest in its initial state but with the bodies rendered as equivalent ellipsoids.

2 Restart the simulation. The viewer now animates the machine in motion.
3 Use the special SimMechanics menu to experiment with the visualization settings. The special SimMechanics toolbar contains most of these functions as well.

See the "Visualizing and Animating Machines" chapter for more about how to control the machine visualization.

4 While the animation is running, open the Reference Position block and move the slider up and down. In addition to what you can see in the Scope plots, the window directly animates the pusher trajectory in space as the mechanism responds to your adjustment.

What Can You Do with SimMechanics?

SimMechanics is a set of block libraries and special simulation features for use in the Simulink environment. You connect SimMechanics blocks to normal Simulink blocks through special Sensor and Actuator blocks.

The blocks in these libraries are the elements you need to model mechanical systems consisting of any number of rigid bodies, connected by joints representing translational and rotational degrees of freedom. SimMechanics can represent machines with components organized into hierarchical subsystems, as in normal Simulink models. You can impose kinematic constraints, apply forces/torques, integrate Newton's equations, and measure resulting motions. You saw some of these features at work in the Conveyor Loader demo model.

Glossary Terms For an explanation of special terms, see the Glossary.

Modeling Machines with SimMechanics

SimMechanics extends Simulink with a library of blocks for specifying a mechanical system's components and properties and solving the system's equations of motion. The blocks are similar to other Simulink blocksets, with some properties unique to SimMechanics.
These are the major steps you follow, using SimMechanics, to build and run a model representation of a machine:

- Specify body inertial properties, degrees of freedom, and constraints, along with coordinate systems attached to bodies to measure positions and velocities.
- Set up sensors and actuators to record and initiate body motions, as well as apply forces/torques.
- Start the simulation, calling the Simulink solvers to find the motions of the system, while maintaining any imposed constraints.
- Visualize the machine while building the model and animate the simulation while running, using the SimMechanics visualization window.

Bodies, Coordinate Systems, Joints, and Constraints

SimMechanics supports user-defined Body blocks specified by their masses and inertia tensors. You connect the bodies to one another with joints representing the possible motions of bodies relative to one another, the system's degrees of freedom (DoFs). You can impose kinematic constraints on the allowed relative motions of the system's bodies. These constraints impose restrictions on body DoFs or drive body motions as explicit functions of time.

The SimMechanics interface gives you many ways to specify coordinate systems (CSs), constraints/drivers, and forces/torques. You can

- Attach coordinate systems (Body CSs) to different points on various Body blocks to specify local axes and origins for actuating and sensing
- Take composite Joint blocks from the SimMechanics library or extend the existing Joint library by constructing your own composite Joints from primitive Joint blocks
- Use other Simulink tools as well as MATLAB expressions in the SimMechanics environment

User-Defined Local Coordinate Systems

SimMechanics automatically sets up a single absolute inertial reference frame and coordinate system (CS) called World. You can also set up your own Local CSs:

- Grounded CSs attached to Ground blocks at rest in the World RF but displaced from the World CS origin
- Body CSs fixed on the system's rigid bodies and moving rigidly with the bodies

Constraint Solver Types

Specifying functional algebraic or kinematic relations between any two bodies, you can constrain the motion of the system by connecting Constraint blocks to pairs of Bodies. Connecting Driver blocks applies time-dependent constraints.

The applied constraints are interpreted in one of three constraint solver types: tolerancing, machine precision, or stabilizing solvers.

Sensors, Actuators, and Force Elements

Sensors and Actuators are the blocks you use to interface between non-SimMechanics Simulink blocks and SimMechanics blocks. Force Elements represent internal forces that require no external input.

- Sensor blocks detect the motion of Bodies and Joints.
- Sensor block outputs are Simulink signals that you can use like any other Simulink signal. You can connect a Sensor block to a Simulink Scope block and display the motions in a system, such as positions, velocities, and accelerations, as functions of time.
- You can feed these Sensor output signals back to a SimMechanics system via Actuator blocks, to specify forces/torques in the system.
- Actuator blocks specify the motions of Bodies or Joints.
- They accept force/torque signals from Simulink and can apply forces/torques on a body or joint from these signals. The Simulink signals can include Sensor block outputs fed back from the system itself.
- They detect discrete locking and unlocking of Joints to implement discontinuous friction forces.
- They specify the position, velocity, and acceleration of bodies or joints as explicit functions of time.
- They prepare a system's initial kinematic state (positions and velocities) for the forward integration of Newtonian dynamics.
Force Elements model internal forces between bodies or acting on joints between bodies. Internal forces depend only on the positions and velocities of the bodies themselves, independent of external signals.

Simulating and Analyzing Mechanical Motion

SimMechanics provides four modes for analyzing the mechanical systems you simulate:

- Forward Dynamics analysis integrates applied forces/torques, maintaining imposed constraints, and obtains resulting motions.
- Inverse Dynamics analysis finds the forces/torques necessary to produce user-specified motions in topologically open systems.
- Kinematics analysis finds the forces/torques necessary to produce user-specified motions in topologically closed (loop) systems.
- Trimming analysis searches for steady or equilibrium states of a system.

In the Conveyor Loader demo model, you analyzed the motion in the Forward Dynamics mode. The model specified forces/torques and initial conditions, then integrated Newton's laws to obtain the machine's motion.

Mathematical Conditions for Rigid Body Motion to Be Determined

For the Forward Dynamics problem to be mathematically solvable, the system must satisfy certain conditions:

- The masses and inertia tensors of all bodies are known.
- All forces and torques acting on each body at each instant of time are known.
- Any constraints among DoFs are specified as constraints among positions and/or velocities alone. These are kinematic constraints, that is, zeroth- and first-order differential constraints. If the constraints are mutually consistent and are fewer in number than the DoFs, the system's motion is nontrivial and can be found by integration.
- Initial conditions (initial positions and velocities) are specified and consistent with all constraints.

In Inverse Dynamics or Kinematics analysis modes, you specify the motions instead and obtain the forces/torques needed to produce those motions.

Forward Dynamics

In the Forward Dynamics mode, SimMechanics uses the Simulink suite of ordinary differential equation (ODE) solvers to solve the mechanical ODEs (Newton's equations). The ODE solvers project the motion of the DoFs onto the mathematical manifold of the kinematic constraints and yield the forces/torques of constraint acting within the system.

You can also use the Simulink linearization tools to linearize the forward motion of a system and obtain its response to small perturbations in forces/torques, constraints, and/or initial conditions.

Inverse Dynamics

SimMechanics can solve the reverse of the forward dynamics problem: instead of starting with given forces/torques and finding the resulting motions, the Inverse Dynamics mode determines the forces/torques needed to produce a
given set of motions that you apply to the machine. This mode only works with open topology systems (model diagrams without closed loops).

Kinematics

You cannot analyze machines represented by model diagrams with closed topology (models with loops) using the Inverse Dynamics mode. The Kinematics mode analyzes the motion of closed-loop models, including the extra internal invisible constraints arising from loop closures.

You also use the Kinematics mode to determine the forces/torques needed to produce a given set of motions applied to a closed-loop machine model.

Constraints can only appear in closed loops, so you use the Kinematics mode to analyze constraint forces/torques as well.

Trimming

Finally, the Trimming mode searches for steady or equilibrium states in a system's motion using the Simulink trim command. The states, once found, are the starting point for linearization analysis using the Simulink linmod and dlinmod commands.

Visualizing and Animating Machines

SimMechanics supports a MATLAB Graphics-based internal visualization window, available as a powerful aid in building, animating, and debugging machines. You used this tool in the Conveyor Loader demo. The machine is displayed in a MATLAB Graphics window. You can use all the standard MATLAB Graphics functions to change the viewer perspective.

The window also has options and features special to SimMechanics. It displays the bodies and their Body coordinate systems (CSs) in an abstract, simplified form. You can render the bodies as convex hulls or as equivalent ellipsoids.

Visualizing Bodies During Machine Building

One way to use the visualization window is while you're building your machine:

- You can open a MATLAB Graphics window before you start to build and then watch the bodies appear and be configured in the display as you create and configure them in your model window.
- You can also build a model without visualization, then open a MATLAB Graphics window when you're done to see the completed machine.

The first approach is especially useful if you're just starting to learn how to use SimMechanics and/or modeling complex machines. In that case, visualization can guide you in assembling the body geometries and connections.

Representing Bodies

The visualization window has two abstract shapes to represent the bodies, one derived from body mass properties, the other from bodies' attached Body coordinate systems (CSs). These shapes are geometric schematics, because SimMechanics accepts only limited body information.

Mass properties. A rigid body's dynamics are partly determined by the body's total mass and how that mass is distributed in space, as encapsulated in its inertia tensor. Any rigid body has a unique corresponding homogeneous ellipsoid with the same mass and inertia tensor.

Using these equivalent ellipsoids is one visualization mode of representing a body in space. The relative sizes of the ellipsoid axes indicate the relative inertial moments about each axis.

Here is a rigid body represented by its equivalent ellipsoid.

Geometric properties. In SimMechanics, every body is represented by a Body block with at least one attached Body CS. The minimum Body CS origin is located at the body's center of gravity (CG).

You can also create other Body CSs on a Body. Any Joint, Constraint/Driver, Actuator, or Sensor attached to a Body must be attached at a Body CS origin.

The set of Body CS origins can be enveloped by a surface; if there are more than three non-coplanar origins, the surface encloses a volume. The minimal surface with outward-bending curvature enveloping this set is the convex hull, which is the other abstract shape available for visualizing a body in space. Fewer than four CS origins produce simpler Body figures.

Here is the same body as a convex hull. The Body CS origins are coplanar in this case, and the hull is two triangles. The hull body surfaces are turned off in order to emphasize the hull outline.

Animating Machine Motion During Simulation

Besides rendering your machine bodies either while you build a model or as a completed model, you can also keep the visualization window open while a model is running in the Simulink model window. The MATLAB Graphics window animates the simulation of the bodies' motions, whether you choose to render the bodies as ellipsoids or as convex hulls, and moves in parallel with model changes on the Simulink side.

Building and Visualizing Simple Machines

Constructing simple mechanical models with SimMechanics is easy to learn if you already know how to make Simulink models. If you are not already familiar with Simulink, see the Simulink documentation.

Introducing the SimMechanics Block Libraries (p. 2-2)

Creating SimMechanics Models (p. 2-7)

Building a Simple Pendulum (p. 2-11)

Visualizing a Simple Pendulum (p. 2-30)

A Four Bar Mechanism (p. 2-36)

Overview of the SimMechanics block libraries for representing machine components

Summary of the most important steps for representing a machine by a SimMechanics model

A beginning tutorial to model and simulate a simple one-degree-of-freedom system

A tutorial that shows how to visualize a simple machine with SimMechanics

A more advanced tutorial that models and simulates a closed-loop machine

Introducing the SimMechanics Block Libraries

SimMechanics is organized into hierarchical libraries of closely related blocks. The next section, "Viewing the Blocks," shows how to view these libraries and gives you a summary of what they contain.

- "Bodies Library" on page 2-4
- "Joints Library" on page 2-5
- "Constraints \& Drivers Library" on page 2-5
- "Sensors \& Actuators Library" on page 2-5
- "Force Elements Library" on page 2-6
- "Utilities Library" on page 2-6
- "Demos Library" on page 2-6

Viewing the Blocks

There are several ways to get to the top-level SimMechanics library on Microsoft Windows and UNIX platforms.

Microsoft Windows Plafforms

Microsoft Windows users can access the blocks through the Simulink Library Browser. Expand the SimMechanics entry in the contents tree.

You can also access the blocks directly inside the SimMechanics library in several ways:

- In the Simulink Library Browser, right-click the SimMechanics entry and select Open the SimMechanics Library. The library appears.
- Click the Start button in the lower left corner of your MATLAB desktop. In the pop-up menu, select Simulink, then SimMechanics, then Block Library.
- Enter mechlib at the MATLAB command line prompt.

UNIX Plafforms

UNIX users can click the Simulink icon on the MATLAB menu bar, open the Blocksets \& Toolboxes library and then SimMechanics. You can also enter mechlib at the command line.

The SimMechanics Library

Once you perform one of these steps, the SimMechanics library opens.

Note This library displays six top-level block groups. You can expand each library by double-clicking its icon. The Joints library contains two second-level sublibraries. The Demos library opens the demos list in the Help browser.

The following sections summarize the blocks in each library. For an explanation of special terms, see the Glossary. You can also consult the complete SimMechanics block reference chapter.

Bodies Library

The Bodies library provides the Body block for representing user-defined bodies by their mass properties (masses and inertia tensors), their positions and orientations, and their attached Body coordinate systems (CSs). This library also contains the Ground block representing immobile ground points,
which have their own Grounded CSs, and the Machine Environment block, for configuring the mechanical settings of a SimMechanics block diagram.

Joints Library

The Joints library provides the blocks to represent the relative motions between bodies as degrees of freedom (DoFs). The library is made up of assembled Joints listed individually and two sublibraries of specialized Joint blocks.

An assembled joint restricts the Body CSs on the two bodies to which it is connected. The assembled Joints are the primitive Prismatic, Revolute, and Spherical blocks and ready-made composite Joints. Unless it is explicitly labeled as disassembled, you can assume a generic Joint block is assembled.

Joints/Disassembled Joints Sublibrary. The Disassembled Joints sublibrary provides blocks for disassembled joints, special joints that do not restrict the Body CSs on the two connected bodies or the DoF axes of the two bodies. You can only use Disassembled Joints to close a loop in your machine. You cannot sense or actuate Disassembled Joints.

Joints/Massless Connectors Sublibrary. The Massless Connectors sublibrary provides blocks for massless connectors, composite joints whose DoFs are separated by a fixed distance. You cannot actuate or sense Massless Connectors.

Constraints \& Drivers Library

The Constraints \& Drivers library provides blocks to specify prior restrictions on DoFs between Bodies. These restrictions can be time-independent constraints or time-dependent driving of DoFs with Simulink signals.

Sensors \& Actuators Library

The Sensors \& Actuators library provides blocks for sensing and initiating the motions of joints and bodies. These blocks play a special role in connecting SimMechanics blocks to other Simulink blocks, as described in "Connecting SimMechanics Blocks" on page 4-4, "Modeling Actuators" on page 4-42, and "Modeling Sensors" on page 4-63.

Force Elements Library

The Force Elements library provides blocks for creating forces or torques between bodies. These blocks model forces internal to your machine.

Utilities Library

The Utilities library contains miscellaneous blocks useful in building models.

Demos Library

The Demos library contains prewritten Simulink demonstration models using SimMechanics and other Simulink blocks, as well as Stateflow ${ }^{\circledR}$ blocks.
Double-clicking the Demos library icon calls the Help browser and displays the SimMechanics demos list.

In the Help browser, click the Demos tab in the Help Navigator pane to the left. To see the demos list, expand the Simulink entry, then click the SimMechanics subentry. Double-click a demo model name in the list to open it.

Creating SimMechanics Models

To become comfortable building mechanical models, you might find it helpful to work through the guided examples in subsequent sections of how to configure and put together elements of SimMechanics to simulate simple machines. This section gives you an overview of the model-building process before you start:

- "Essential Steps to Build a Model"
- "Essential Steps to Configure and Run a Model" on page 2-9

The special terms used in this guide are summarized in the Glossary.

Essential Steps to Build a Model

You use the same basic procedure for building a SimMechanics model regardless of its complexity. The steps are similar to those for building a regular Simulink model. More complex models add steps without changing these basics.

1 Select Ground, Body, and Joint blocks. From the Bodies and Joints libraries, drag and drop the Body and Joint blocks needed to represent your machine, including a Machine Environment block and at least one Ground block, into a Simulink model window.

The Machine Environment block represents your machine's mechanical settings.
Ground blocks represent immobile ground points at rest in absolute (inertial) space.
Body blocks represent rigid bodies.
Joint blocks represent relative motions between the Body blocks to which they are connected.

2 Position and connect blocks. Place Joint and Body blocks in proper relative position in the model window and connect them in the proper order. The essential result of this step is creation of a valid tree block diagram made of
Machine Env - Ground - Joint - Body — Joint - Body - ... — Body
with an open or closed topology and where at least one of the bodies is a Ground block. Connect exactly one environment block to a Ground.

A Body can have more than two Joints attached, marking a branching of the sequence. But Joints must be attached to two and only two Bodies.

3 Configure Body blocks. Click the Body blocks to open their dialog boxes; specify their mass properties (masses and moments of inertia), then position and orient the Bodies and Grounds relative to the World coordinate system (CS) or to other CSs. You set up Body CSs here.

Look for intensive explanation and examples of positioning and orienting bodies in the "Representing Motion" chapter.

4 Configure Joint blocks. Click each of the Joint blocks to open its dialog box and set translation and rotation axes and spherical pivot points.

5 Select, connect, and configure Constraint and Driver blocks. From the Constraints \& Drivers library, drag, drop, and connect Constraint and Driver blocks in between pairs of Body blocks. Open and configure each Constraint/Driver's dialog box to restrict or drive the relative motion between the two respective bodies of each constrained/driven pair.

6 Select, connect, and configure Actuator and Sensor blocks. From the Sensors \& Actuators library, drag and drop the Actuator and Sensor blocks that you need to impart and sense motion. Reconfigure Body, Joint, and Constraint/Driver blocks to accept Sensor and Actuator connections. Connect Sensor and Actuator blocks. Specify control signals (applied forces/torques or motions) through Actuators and measure motions through Sensors.

Actuator and Sensor blocks connect SimMechanics blocks to non-SimMechanics Simulink blocks. You cannot connect SimMechanics blocks to regular Simulink blocks otherwise. Actuator blocks take inport signals from normal Simulink blocks (for example, from the Simulink

Sources library) to actuate motion. Sensor block output ports generate Simulink signals that you can feed to normal Simulink blocks (for example, from the Simulink Sinks library).

In the most straightforward model of a machine, you apply forces/torques and initial conditions, then start the simulation in the Forward Dynamics mode to obtain the resulting motions. In the Kinematics and Inverse Dynamics modes, you apply motions to all independent degrees of freedom. With these modes, you can find the forces/torques needed to produce these imposed motions.

7 Encapsulate subsystems. Systems made from SimMechanics blocks can function as subsystems of larger models, like subsystems in normal Simulink models. You can connect an entire SimMechanics model as a subsystem to a larger model by using the Connection Port block in the Utilities library.

Essential Steps to Configure and Run a Model

After you've built your model as a connected block diagram, you need to decide how you want to run your machine, configure SimMechanics and Simulink settings, and set up visualization.

- SimMechanics offers four analysis modes for running a machine model. The mode you will probably use most often is Forward Dynamics.
But a more complete analysis of a machine makes use of the Kinematics, Inverse Dynamics, and Trimming modes as well. You can create multiple versions of the model, each with the same underlying machine, but connected to Sensors and Actuators and configured differently for different modes.
- You can also use the powerful visualization and animation features of SimMechanics. You can visualize your machine as you build it or after you are finished but before you start the simulation, as a tool for debugging the machine geometry. You can also animate the machine model as you simulate.
- Choose the analysis mode, as well as other important mechanical settings, in your Machine Environment dialog. Start visualization and adjust Simulink settings in the Simulink Configuration Parameters dialog. See "A Four Bar Mechanism" on page 2-36 for an example.

The tutorials of this chapter introduce you to most of these steps.

Caution You might want to make modifications to these tutorial models. To avoid errors,

- Do not attempt to connect Simulink signal lines directly to SimMechanics blocks other than Actuators and Sensors
- Keep the collocation of the Body coordinate system origins on either side of each assembled Joint to within assembly tolerances

You should save multiple versions of models as you try different analysis modes and configurations.

The first tutorial in the next section shows you how to configure the most basic blocks in any model: Machine Environment, Ground, Body, and a Joint, in order to create a simple pendulum model. The second tutorial explains how to visualize and animate the pendulum.

Building a Simple Pendulum

In this first tutorial, you drag, drop, and configure the most basic blocks needed for any mechanical model, as well as add some sensors to measure motion. The tutorial guides you through these aspects of model-building:

- "The World Coordinate System and Gravity" on page 2-12
- "Configuring a Ground Block" on page 2-12
- "Configuring a Body Block" on page 2-14
- "Configuring a Joint Block" on page 2-20
- "Adding a Sensor and Starting the Simulation" on page 2-24

The end result is a model of a simple pendulum. The pendulum is a swinging steel rod. We strongly recommend that users work through this tutorial first before moving on to "Visualizing a Simple Pendulum" on page 2-30.

A Simple Pendulum: A Swinging Steel Rod

Opening the SimMechanics Block Library

Following one of the ways described earlier in the "Viewing the Blocks" section in this chapter, open the SimMechanics library. Then from the SimMechanics library, open a new, empty Simulink model window.

The World Coordinate System and Gravity

Before you configure a Ground block, you need to understand SimMechanics’ internally defined fixed or "absolute" coordinate system (CS) called World. The World CS sits at rest in the inertial reference frame also called World. The World CS has an origin $(0,0,0)$ and a triad of right-handed, orthogonal coordinate axes.

The default World coordinate axes are defined so that
$+x$ points right
$+y$ points up (gravity in $-y$ direction)
$+z$ points out of the screen, in three dimensions
The vertical direction or up-and-down is determined by the gravity vector direction (acceleration \boldsymbol{g}) relative to the World axes. Gravity is a background property of a model that you can reset before starting a simulation, but does not dynamically change during a simulation.

See "Running SimMechanics Models in Simulink" on page 5-2 for displaying global mechanical properties of SimMechanics models.

Configuring a Ground Block

World serves as the single absolute CS that defines all other CSs. But you can create additional ground points at rest in World, at positions other than the World origin, by using Ground blocks. Ground blocks, representing ground points, play a dynamical role in machine models. They function as immobile bodies and also serve to implement a machine's mechanical environment.

Minimum Ground Blocks Every machine model must have at least one Ground block. Exactly one Ground block in every machine must be connected to a Machine Environment block.

A Ground Point Relative to World

Steps to Configuring the Ground Block

Now place a fixed ground point at position $(3,4,5)$ in the World CS:
1 In the SimMechanics library, open the Bodies library.
2 Drag and drop a Ground and a Machine Environment block from the Bodies library into the model window. Close the Bodies library.

3 Open the Ground block dialog box. Into the Location [x y z] field, enter the vector [3 4 5]. Select the Show Machine Environment port check box. Click OK to close the dialog. Connect the environment block.

Properties of Grounds

At every ground point, a Grounded CS is automatically created:

- The origin of each Grounded CS is the ground point itself.
- The Grounded CS axes are always fixed to be parallel to the World CS axes, as shown in the figure "A Ground Point Relative to World" on page 2-13.

Configuring a Body Block

While you need one Machine Environment and at least one Ground block to make a machine model, a real machine consists of one or more rigid bodies. So you need to translate the components of a real machine into block representations. This section explains how you use a Body block to represent each rigid body in your machine:

- "Characteristics of a Body Block" on page 2-15
- "Properties of the Simple Pendulum Body" on page 2-16
- "Configuring the Body Dialog" on page 2-17

Although the body is the most complicated component of a machine, SimMechanics does not use the full geometric shape and mass distribution of the body. SimMechanics only needs certain mass properties and simplified
geometric information about the body's center of gravity, its orientation, and the coordinate systems attached to the body. The "Representing Motion" chapter explains in detail how to orient bodies and their coordinate systems.
Setting these properties sets the body's initial conditions of motion, if you do nothing else to the Body block or its connected Joints before simulating.

Characteristics of a Body Block

The main characteristics of a Body block are its mass properties, its position and orientation in space, and its attached Body coordinate systems (CSs).

The mass properties include the mass and inertia tensor. The mass is a real, positive scalar. The inertia tensor is a real, symmetric 3 -by- 3 matrix. It does not have to be diagonal.

The position of the body's center of gravity (CG) and orientation relative to some coordinate system axes indicate where the body is and how it is rotated. These are the body's initial conditions during construction of the model and remain so when you start the simulation, unless you change them before starting.

The attached Body CSs (their origins and coordinate axes) are fixed rigidly in the body and move with it. The minimum CS set is one, the CS at the CG (the CG CS), with its CS origin at the center of gravity of the body. The default CS set is three, the CG CS and two additional CSs called CS1 and CS2 for connecting to Joints on either side. See the next section, "Configuring a Joint Block" on page 2-20.

Beyond the minimum CS at the CG, you can attach as many Body CSs on one Body as you want. You need a separate CS for each connected Joint, Constraint, or Driver and for each attached Actuator and Sensor.

The inertia tensor components are interpreted in the CG CS, setting the orientation of the body relative to the CG CS axes. The orientation of the CG CS axes relative to the World axes then determines the absolute initial orientation of the body. Since the CG CS axes remain rigidly fixed in the body during the simulation, this relative orientation of the CG CS axes and the body does not change during motion. The inertia tensor components in the CG CS also do not change. As the body rotates in inertial space, however, the CG CS axes rotate with it, measured with respect to the absolute World axes.

Properties of the Simple Pendulum Body

The simple pendulum is a uniform, cylindrical steel rod of length 1 meter and diameter 2 cm . The initial condition is the rod lying parallel to the negative x-axis, horizontal in the gravity field. One end of the rod, the fixed pivot for the rod to swing, is located at the ground point $(3,4,5)$. Its coordinate system is called CS1. The center of gravity and the origin of the CG CS is the geometric center of the rod. Take the CG CS axes to be parallel to the World axes as you set up the pendulum.
Uniform steel has density $\rho=7.93 \mathrm{gm} / \mathrm{cc}$ (grams per cubic centimeter). In the CG CS here, the inertia tensor \boldsymbol{I} is diagonal, and $I_{z z}$ controls the swinging about the z-axis, in the x - y plane. The inertia tensor is always evaluated with the origin of coordinates at the CG. For a rod of length $L=1 \mathrm{~m}$ and radius $r=1 \mathrm{~cm}$, the mass $m=\rho \pi r^{2} L=2490 \mathrm{gm}$ (grams), and the inertia tensor \boldsymbol{I} reads

$$
\left[\begin{array}{ccc}
I x x & 0 & 0 \\
0 & I y y & 0 \\
0 & 0 & I z z
\end{array}\right]=\left[\begin{array}{ccc}
\frac{m r^{2}}{2} & 0 & 0 \\
0 & \frac{m L^{2}}{12} & 0 \\
0 & 0 & \frac{m L^{2}}{12}
\end{array}\right]=\left[\begin{array}{ccc}
1250 & 0 & 0 \\
0 & 2.08 \times 10^{6} & 0 \\
0 & 0 & 2.08 \times 10^{6}
\end{array}\right]
$$

in gm- cm^{2} (gram-centimeters ${ }^{2}$). The x-axis is the cylinder's symmetry axis. Thus $I_{\mathrm{yy}}=I_{\mathrm{zz}}$.
The mass and geometric properties of the body are summarized in the following table and depicted in the figure "Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems" on page 2-17.

Body Data for the Simple Pendulum

Property	Value
Mass (gm)	2490
Inertia tensor $\left(\mathrm{kg}-\mathrm{m}^{2}\right)$	$1.25 e-4$ 0 $0 ;$ 0 0.208 0 0 0 $0.208]$

Body Data for the Simple Pendulum (Continued)

Property	Value
CG Position/Origin (m)	$\left[\begin{array}{llll}2 & .5 & 4 & 5\end{array}\right]$
CS1 Origin (m)	$\left[\begin{array}{llll}3 & 4 & 5 &] \\ \hline\end{array} \mathrm{l}\right.$

Configuring the Body Dialog

Take the steps to configuring a Body block in several stages.

Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems

Adding the Body Block. To start working with the Body block:
1 Open the Bodies library in the SimMechanics library.
2 Drag and drop a Body block into your model window.
3 Open the Body block dialog box. Note the two main areas you need to configure:

- Mass properties - These are the mass and inertia tensor.
- Body coordinate systems - These are the details about the position and orientation of the Body CSs.

Note To apply your dialog entries at any time, click Apply. To close a dialog, click OK.

Specifying the Body's Mass Properties. Now enter the body's mass and inertia tensor:

1 Use the data from the table "Body Data for the Simple Pendulum" on page 2-16.

In the Mass field, enter 2490 and change the units to g (grams).
2 In the Inertia tensor field, enter [1.25e-4 0 0; 0 0.208 0; 000.208] and leave the default units as $\mathrm{kg}-\mathrm{m}^{2}$.

Specifying Body Coordinate Systems (Position). Enter the translational position of the body and its Body CS origins in space:

1 Use the data from the table "Body Data for the Simple Pendulum" on page 2-16, and work on the Position pane. Vectors are assumed translated from the World origin and oriented to the World axes.

2 Note the three default CSs in the Body dialog box. The CS at the CG is necessary for any Body, and you will connect CS1 to the Ground with a Joint shortly.

Delete CS2 by selecting its line in the Body CS list and clicking the Delete button in the Body CS controls.

You have two already existing CSs not on this Body that you can use to specify the positions of the Body CS origins that are on this Body:

- Preexisting World origin at [000]
- The Adjoining CS on the neighboring body, in this case the Grounded CS origin at [3 4 5]

3 Specify the CG and CS1 origins relative to World:
a In the pull-down menu under Translated from origin of, choose World for both coordinate systems, CG and CS1.
b Under Origin position vector, specify the position of the origin of each CS, translated from the World origin:
[3 4 5] for CS1
[2.545] for CG

4 Select a CS relative to whose coordinate axes the components of the vectors in the last step are measured. You choose these CS axes in the Components in axes of menu. Select World for both CSs. Leave the units as m (meters).

Specifying Body Coordinate Systems (Orientation). Enter the rotational orientation of the body and its Body CS axes in space:

1 Work on the Orientation pane. The default orientation for all CS axes is parallel to World. The sign of all rotations is determined by the right-hand rule.

In the figure "Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems" on page 2-17, the CS1 and CG axes are oriented parallel to the World axes, so the CS1 and CG axes need no rotation.

2 For both CSs, set the Relative to coordinate system menu to World.
3 For CG and CS1, leave the Orientation vector at default [$\left.\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and the Specified using convention at default Euler X-Y-Z. Close the Body dialog.

Configuring a Joint Block

A machine is made up of Bodies with geometric and mass information. But Bodies carry no information of how they move. The possible directions of motion that a Body can take are called its degrees of freedom (DoFs), and this section explains how you represent these DoFs by Joint blocks:

- "How to Connect a Joint Between Two Bodies" on page 2-21
- "Revolute Joint for the Simple Pendulum" on page 2-21

DoFs Are Relative In SimMechanics, DoFs and the Joints that represent them are relative DoFs. That is, DoFs represent the possible motions between one body and another. So a DoF is defined by a pair of bodies, and you must connect every Joint to two and only two Bodies.

One (but not both) of the members of such a pair of Bodies can be a Ground. The other member Body of such a pair then has its motion defined relative to a fixed ground point. This fixed ground point does not have to be the same as the World origin. A machine can have many such Ground-Body pairs and must have at least one.

How to Connect a Joint Between Two Bodies

You represent relative motion of bodies with respect to one another by connecting their Body blocks with Joints. You can connect a Body to one or more Joints.

A Joint block is always connected to a specific point on the Body on either side of the Joint. The specific point for anchoring a Joint on a Body is the origin of a Body CS, and a Joint is therefore connected on one side to one Body at a Body CS origin, and on the other side to the other Body at a Body CS origin.

Usually a Body is connected to a Joint on either side, so the default you saw earlier in this tutorial for Body CSs in the Body dialog box is three Body CSs: the CS at the center of gravity (CG) and two other CSs (CS1 and CS2). But a Body at the end of a Body-Joint-...-Body chain is connected to only one Joint.

Revolute Joint for the Simple Pendulum

In spite of the complexity of the concepts implicit in a Joint, the actual configuration of a Joint block is fairly simple. Here you insert and configure one revolute Joint block between the Ground and Body blocks you've already put into the model window.

A Simple Pendulum Connected to Ground by a Revolute

Configuring the Revolute Joint Block. The geometry of the Joint connection is shown in the figure preceding. The ground point at $(3,4,5)$ and the CS1 at $(3,4,5)$ are actually the same point in space, but have been separated in the figure for clarity. The revolute rotation axis is along the $+z$ direction:

1 Open the Joints library in the block library.
2 Drag and drop a Revolute block into your model window.
3 Rotate the Revolute block so that you can connect the base (B) side of the Joint to the Ground block and the follower (F) side of the Joint to the Body block. Make the two connections.

4 Open the Revolute dialog box. In the Parameters area, on the Axes pane, configure the rotation axis to the World z-axis:
a Enter [lllll 001$]$ under Axis of rotation [$\mathbf{x} \mathbf{y} \mathbf{z}$].
b Leave the Reference csys at WORLD.
c Ignore the Advanced tab.
Note several important things:

- Under Connection parameters, the Current base is located at GND@Ground, which is the Grounded CS associated with the Ground block located at $(3,4,5)$ in World.
- Under Connection parameters, the Current follower is located at CS1@Body, which is the CS1 on Body1 located at $(3,4,5)$ in World.
- This Joint's directionality runs from Ground to Body along the $+z$-axis.

5 Close the Revolute dialog box.

Congratulations - you have now finished the simplest possible model of a machine: a connected block diagram of Ground-Joint-Body. Your model window should look like this.

Adding a Sensor and Starting the Simulation

To measure the motion of the pendulum as it swings, you need to hook one or more Simulink Scope blocks to your model. The special library of Actuators and Sensor blocks gives you the means to input and output Simulink signals to and from SimMechanics models. Sensors allow you to watch the mechanical motion once you start the simulation, as the following explain:

- "Connecting and Configuring the Pendulum Sensor"
- "Configuring the Machine Environment and Configuration Parameters" on page 2-26
- "Starting and Interpreting the Motion" on page 2-27

Connecting and Configuring the Pendulum Sensor

In this example, you measure the angular motion of the revolute joint:
1 In the block library, open the Sensors and Actuators library. Drag and drop a Joint Sensor block into your model window.

2 Open the Revolute block. Change Number of sensor/actuator ports from 0 to 1 using the spinner menu. An open connector port O appears on the side of Revolute. Close Revolute.

3 Connect this connector port to the connector port on the Joint Sensor block. The open connector port changes to solid •.

4 Open Joint Sensor. Select the Angle and the Angular velocity check boxes. Leave the other defaults. Close the Joint Sensor block.

5 Open the Simulink Library Browser. From the Sinks library, drag and drop a Scope block and an XY Graph block into your model window. From the Signal Routing library, drag and drop a Mux block as well. Connect the Simulink outports > on the Joint Sensor block to the Scope and XY Graph blocks as shown.

The lines from the outports $>$ to the Scope and XY Graph blocks are normal Simulink signal lines and can be branched. You cannot branch the lines
connecting SimMechanics blocks to each another at the round connector ports • .

6 Save your model for future reference as spen.mdl.

You now need to configure the global parameters of your model before you can run it.

Configuring the Machine Environment and Configuration Parameters

The Configuration Parameters dialog box is a standard feature of Simulink. Reset its entries for this model to obtain more accurate simulation results.

1 In the Simulink menu bar, open the Simulation menu and click Configuration Parameters to open the Configuration Parameters dialog.

2 Select the Solver node of the dialog. Under Solver options, change Relative tolerance to 1e-6 and Absolute tolerance to 1e-4.

If you want the simulation to stop after a finite time, change Stop time to a finite number. The pendulum period is approximately 1.6 seconds.

3 Close the Configuration Parameters dialog box.

A special feature of SimMechanics models is the Machine Environment block.
1 Open your block diagram's Machine Environment block dialog.
Note the default Gravity vector, $\left[\begin{array}{lll}0 & -9.81 & 0\end{array}\right] \mathrm{m} / \mathrm{s}^{2}$, which points in the $-y$ direction, as shown in the figure "Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems" on page 2-17. Gravitational acceleration $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

2 Close the Machine Environment dialog.

Starting and Interpreting the Motion

You can now start your simulation and watch the pendulum motion via the Scope and XY Graph blocks:

1 Open the XY Graph block dialog box. Set the following parameters.

Parameter	Value
$x-m$ in	0
x-max	200
y-min	-500
y-max	500

Leave Sample time at default and close the dialog.
2 Open the Scope block and start the model. The XY Graph opens automatically when you start the simulation.

3 View the full motion of both angle and angular velocity (in degrees and degrees per second, respectively) as functions of time in Scope. Click Autoscale if the motion is not fully visible.

The motion is periodic but not simple harmonic (sinusoidal), because the amplitude of the swing is so large (180 degrees from one turning point to the other). Note that the zero of angle is the initial horizontal angle, not the vertical. The zeros of motion are always the initial conditions.

The XY Graph shows the angle versus angular velocity, with no explicit time axis. These two variables trace out a figure similar to an ellipse, because of the conservation of total energy E :

$$
\frac{1}{2} J\left(\frac{d \theta}{d t}\right)^{2}+m g h *(1-\sin \theta)=E=\mathrm{constant}
$$

where $J=I_{z z}+m L^{2} / 4$ is the inertial moment of the rod about its pivot point (not the center of gravity). The two terms on the left side of this equation are the kinetic and potential energies, respectively. The coordinate-velocity space is the phase space of the system.

Phase Space Plot of Simple Pendulum Motion: Angular Velocity Versus Angle

The directionality of the Revolute Joint assumes that the rotation axis lies in the $+z$ direction. Looking at the pendulum from the front, follow the figures "A Ground Point Relative to World" on page 2-13, "Equivalent Ellipsoid of Simple Pendulum with Body Coordinate Systems" on page 2-17, and "A Simple Pendulum Connected to Ground by a Revolute" on page 2-22. Positive angular motion from this perspective is counterclockwise, following the right-hand rule.
The next tutorial walks you through visualizing and animating this same simple pendulum model.

Visualizing a Simple Pendulum

In this section, you learn how to view the swinging pendulum rod of the model introduced in the last section using the SimMechanics visualization window. Use your saved spen.mdl model, or use the mech_spen model in the Demos library.

SimMechanics supports a customized MATLAB Graphics-based window for visualizing machines. This tool displays a machine by rendering its bodies. The bodies can be displayed in two ways, by equivalent ellipsoids and by closed surfaces (convex hulls) enveloping the bodies' coordinate systems.

Note You can find more on visualizing and animating machine models in the "Visualizing and Animating Machines" chapter.

Consult the MATLAB Graphics documentation for more about its standard features.

This section explains how to visualize your pendulum using either body rendering. You can view the pendulum before you start and, separately, choose to animate it during simulation as well:

- "Representing the Bodies" on page 2-31
- "Visualizing with MATLAB Graphics" on page 2-32

Starting Visualization

The first step is to open the Configuration Parameters dialog from the Simulation menu of your model window:

1 On the Simulink menu bar, open the Simulation menu and select the Configuration Parameters entry. The Configuration Parameters dialog appears. Select the SimMechanics node at the lower left.

2 To view the pendulum in its static initial state, select the Update machine visualization on update diagram check box.

To animate the pendulum visualization while the simulation is running, select the Animate machine during simulation check box as well.

3 Click OK. Select Update Diagram from the Edit menu to open the visualization window.

Representing the Bodies

The information that you use to specify body properties in a SimMechanics model is enough to represent each body in certain special, simplified ways. SimMechanics does not have the information about the bodies needed to represent their full geometries.

Equivalent Ellipsoids

A rigid body has a unique equivalent ellipsoid, a homogeneous solid ellipsoid with the same inertia tensor. For more about this representation for rigid bodies, see "Rendering Body Shapes in SimMechanics" on page 6-5.

Because the rod has an axis of symmetry, the x-axis in this case, two of its three generalized radii are equal: $a_{\mathrm{y}}=a_{\mathrm{z}}$. The generalized radii of the equivalent ellipsoid are $a_{\mathrm{x}}=\sqrt{5 / 3}(L / 2)=0.646 \mathrm{~m}$ and $a_{\mathrm{y}}=a_{\mathrm{z}}=\sqrt{5}(r / 2)=1.12 \mathrm{~cm}$.

Convex Hulls

Every Body has at least one Body coordinate system (CS) at the CG. A Body also has one or more extra Body CSs for the attached Joints, as well as possible Actuators and Sensors. Each Body CS has an origin point, and the collection of all these points, in general, defines a volume in space. The minimum outward-bending surface enclosing such a volume is the convex hull of the Body CSs, and this is the alternative way that SimMechanics has to represent a body.
You created the pendulum body with only two Body CSs, CG and CS1. The convex hull for the pendulum rod is thus a line joining the two Body CS origins, the minimum connecting figure.

Choosing the Body Representation

You can choose which displayed representation of the pendulum rod or any machine bodies SimMechanics uses in the special SimMechanics menu of the visualization window. In the Machine Display submenu, choose Convex Hulls or Ellipsoids.

Visualizing with MATLAB Graphics

The MATLAB Graphics-based visualization tool is built into SimMechanics. To open it or to synchronize it at any time with your model, select Update Diagram in your model window's Edit menu.

Rendering the Pendulum as a Convex Hull

The displayed figure depends on the body representation you choose. If you chose Convex Hulls in the SimMechanics > Machine Display menu, a convex hull appears.

Pendulum Rod Rendered as a Convex Hull

You can change the viewpoint and manipulate the image using standard MATLAB Graphics techniques. Consult "Introducing the SimMechanics Visualization Window" on page 6-10 as well. Experiment with the special SimMechanics menu's settings to see various ways of displaying the pendulum.

When you start the model, the body in the graphics window moves in step with the simulation.

Rendering the Pendulum as an Equivalent Ellipsoid

To render the pendulum as an equivalent ellipsoid, follow the previous steps, but change the Machine Display choice:

1 Open the special SimMechanics menu and select Machine Display.
2 In the submenu, select Ellipsoids.
3 The SimMechanics machine display changes. The equivalent ellipsoid looks like this.

Pendulum Rod Rendered as an Equivalent Ellipsoid

Modeling and Visualizing More Complex Machines

The next tutorial shows how to create, run, and visualize a model for a more complex machine, a four bar mechanism. To configure Ground, Body, and Joint blocks now means repeating and expanding upon the three blocks of the first two tutorials.

A Four Bar Mechanism

In this tutorial, you build a model of a planar four bar mechanism and practice using some of the important SimMechanics features:

- "Configuring the Mechanical Environment" on page 2-38
- "Setting Up the Block Diagram" on page 2-40
- "Configuring the Ground and Joint Blocks" on page 2-42
- "Configuring the Body Blocks" on page 2-47
- "Sensing Motion and Running the Model" on page 2-52

You are urged to work through "Building a Simple Pendulum" on page 2-11 and "Visualizing a Simple Pendulum" on page 2-30 before proceeding with this section. Learn more about how to position and orient bodies in the "Representing Motion" chapter.

The machine consists of three moving bars of homogeneous steel, two connected at one end each to ground points and a third cross bar connecting the first two. The base acts as an immobile fourth bar, with a Ground at each end. The machine forms a single closed loop, and its motion is confined to two dimensions.

The elementary parts of the machine are the bodies, while the revolute joints are the idealized rotational degrees of freedom (DoFs) at each body-to-body contact point. The bodies and the joints expressing the bodies' relative motions must be translated into corresponding SimMechanics blocks. If you want, you can add elaborations such as Constraints, Drivers, Sensors, and Actuators to this essential block diagram.

A Four Bar Mechanism

Counting the Degrees of Freedom

The three moving bars are constrained to move in a plane. So each bar has two translational and one rotational DoFs, and the total number of machine DoFs, before counting constraints, is $3^{*}(2+1)=9$.

Because the motion of the bars is constrained, however, not all of these nine DoFs are independent:

- In two dimensions, each connection of a body with another body or with a ground point imposes two restrictions (one for each coordinate direction).
Such a restriction effectively eliminates one of the two body ends as independently moving points, because its motion is determined by the next body's end.
- There are four such body-body or body-ground connections and therefore eight restrictions implicit in the machine's geometry.

The eight restrictions on the nine apparent DoFs reduce the DoFs to one, 9-8 $=1$. There are four rotational DoFs between bars or between bars and grounds. But three of these are dependent. Specifying the state of one rotational DoF fully specifies the other three.

Configuring the Mechanical Environment

Open a new blank model window from the SimMechanics library. From the Bodies library of SimMechanics, drag in and drop a Machine Environment block and a Ground block. Enable the Ground's Machine Environment port and connect the environment block to the Ground.

First you need to configure the machine's mechanical settings. Open the Machine Environment block. The block dialog box appears.

Block parameters: Machine Environment

Description
Defines the mechanical simulation environment for the machine to which the block is connected: gravity, dimensionality, analysis mode, constraint solver type, tolerances, linearization, and visualization.

> Open Configuration Parameters.

The Machine Environment Dialog Box Panes

Click the four tabs in succession to expose each pane.

Pane	Function
Parameters	Controls general settings for mechanical simulations
Constraints	Sets constraint tolerances and how constraints are interpreted
Linearization	Controls how SimMechanics models are linearized with Simulink
Visualization	Chooses whether or not to visualize the machine

Note some important features of this dialog box:

- The Gravity vector field specifies the magnitude and direction of gravitational acceleration and sets the vertical or up-down direction.
- The Linear and Angular assembly tolerance fields are also set here. Change Angular assembly tolerance to 1e-3 deg (degrees). (See "Setting Assembly Tolerances" on page 5-5.)
- Leave the other defaults, except Visualization. In that pane, select the Visualize machine check box.
Close the dialog by clicking OK.

Starting Visualization

Visualization If possible, open the visualization window before building a model. With it, you can keep track of your model components and how they are connected, as well as correct mistakes.

To visualize the bodies as you build the machine, go to the SimMechanics node of the Configuration Parameters dialog:

1 Select the Update machine visualization on update diagram check box. If you want to animate the simulation later when you run the model, select the Animate machine during simulation check box as well. Click OK or Apply.

Then select Update Diagram from the Edit menu. The window opens.
2 In the special SimMechanics menu, select Machine Display, then Ellipsoids.

As you add and change bodies in your model, you can update the machine display in your window at any time by updating your diagram.

Setting Up the Block Diagram

In this set of steps, you create Bodies, position them, connect them with Joints, then configure the Body and Joint properties. The Body dialog boxes give you many ways to represent the same machine in the same physical state. This section explains one way.

Alternative, equivalent ways of configuring Bodies are discussed in "Body Coordinate Systems" on page 4-10.

MAT-File Data Entry

The geometric and mass properties you need to specify for the Grounds and Bodies in this model are listed in the tables of the following two sections, "Configuring the Ground and Joint Blocks" on page 2-42 and "Configuring the Body Blocks" on page 2-47.

Instead of typing the numerical values of these properties into the dialog boxes, you can load the variable set you need into the workspace by entering

```
load fourbar_data
```

at the MATLAB command line. The variable name for each property is given in the tables. Just enter the appropriate variable names in the appropriate fields as you come to them in the dialog boxes.

Block Diagram Setup

Your model already has one environment block and one ground block. Assemble the full model with these steps:

1 In the block library, open the Bodies library. Drag and drop another Ground block and three Body blocks into the new model window. Close the Bodies library.

2 From the Joints library, drag and drop four Revolute blocks into the model window.

3 Rotate and connect the blocks in the pattern shown in the following figure or with an equivalent block diagram topology.
Use the block names shown in this figure for later consistency.

Connected Environment, Ground, Body, and Joint Blocks for the Four Bar

Block diagram topology. The topology of the block diagram is the connectivity of its elements. The elements are the Bodies and Grounds, connected by the Joints. Unlike the model of "Building a Simple Pendulum" on page 2-11, the four bar mechanism is a closed-loop machine. The two Ground blocks represent points on the same absolute, immobile body, and they close the loop of blocks.

The simple pendulum has only one ground and does not close its block connections.

To maintain consistent Body motion direction, make sure the Body coordinate system (CS) port 囚 pairs on each Body follow the sequence CS1-CS2, CS1-CS2, etc., for each bar, moving from Ground_1 to Ground_2, from right to left, as shown. To make the Joints consistent with the Body motion, the base-follower pairs B-F, B-F, etc., should follow the same right-to-left sequence.

Configuring the Ground and Joint Blocks

Now configure the Ground blocks with the data from the following table. Grounded coordinate systems (CSs) are automatically created.

Geometry of the Four Bar Base

This table summarizes the geometry of ground points.
Geometric Properties of the Four Bar Grounds

Property	Value			MAT-File Variable
Ground_1 point (m)	[0.434	00.04]	gpoint_1
Ground_2 point (m)	[-0.433	00.04]	gpoint_2

The base of the mechanism has these measurements:

- The base is horizontal, with length 86.7 cm .
- Ground_1 represents the ground point 43.3 cm to the right of the World CS origin.
- Ground_2 represents the ground point 43.4 cm to the left of the World CS origin.
- The bottom revolutes are 4 cm above the origin $(x-z)$ plane.

Setting Up the Grounds

To represent ground points on the immobile base, you need to configure the Ground blocks. Use the variable names if you've loaded fourbar_data.mat into your workspace:

1 Open Ground_1 and enter [0.43400 .04] or gpoint_1 in the Location field.

2 Open Ground_2 and enter [-0.43300 .04] or gpoint_2 in the Location field.

3 Leave both pull-down menus for units at default m (meters).

Configuring the Revolute Joints

The three nongrounded bars move in the plane of your screen ($x-y$ plane), so you need to make all the Revolute axes the z-axis (out of the screen):

1 Open each Revolute's dialog box in turn. In its Parameters area, note on the Axes pane that the z-axis is the default: Axis of rotation [$\mathbf{x} \mathbf{y} \mathbf{z}$] is set to $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ in each, relative to Reference csys WORLD. Leave these defaults.

A Revolute block contains only one primitive joint, a single revolute DoF. So the Primitive is automatically Revolute. Its name within the block is R1.

2 Leave these Revolute joint block defaults and ignore the Advanced tab.
The Body CS and base-follower joint directionality should be set up as shown in the block diagram of the figure "Connected Environment, Ground, Body, and Joint Blocks for the Four Bar" on page 2-41. In the Connection parameters area, the default Joint directionality for each Revolute automatically follows the right-to-left sequence of Grounded and Body CSs:

- Revolute1: Base to follower: GND@Gound_1 to CS1@Bar1
- Revolute2: Base to follower: CS2@Bar1 to CS1@Bar2
- Revolute3: Base to follower: Cs2@Bar2 to Cs1@Bar3
- Revolute4: Base to follower: CS2@Bar3 to GND@Ground_2

In this Joint directionality convention,

- At each Joint, the leftward Body moves relative to the rightward Body.
- The rotation axis points in the $+z$ direction (out of the screen).
- Looking at the mechanism from the front in the figure, "A Four Bar Mechanism" on page 2-37, the positive rotational sense is counterclockwise. All Joint Sensor and Actuator data are interpreted in this sense.

Configuring the Body Blocks

Setting the Body properties is similar for each bar, but with different

- Mass properties
- Lengths and orientations
- Center of gravity (CG) positions
- Body coordinate systems (CSs)
to be entered into the dialog boxes.
In contrast to the first tutorial, where you specify Body CS properties with respect to the absolute World CS, in this tutorial, you specify Body CS origins on the bars in relative coordinates, displacing Bar1's CS1 relative to Ground_1, Bar2's CS1 relative to Bar1, and so on, around the machine loop. You can refer the definition of a Body CS to three types of coordinate systems:
- To World
- To the other Body CSs on the same Body
- To the Adjoining CS (the coordinate system on a neighboring body or ground directly connected by a Joint to the selected Body CS).

The components of the displacement vectors for each Body CS origin continue to be oriented with respect to the World axes. The rotation of each Body's CG CS axes is also with respect to the World axes, in the Euler X-Y-Z convention.

The following three tables summarize the body properties for the three bars.
Bar 1 Mass and Body CS Data (MKS Units)

Property	Value	Variable Name
Mass	5.357	m_1
Inertia tensor	$\begin{aligned} & {\left[\begin{array}{lllll} 1.07 e-3 & 0 & 0 ; & 0.143 & 0 ; \end{array}\right.} \\ & 000.143] \end{aligned}$	inertia_1
CG Origin	[0.03 0.282 0] from CS1	cg_1
CS1 Origin	[00000] from ADJOINING	cs1_1

Bar 1 Mass and Body CS Data (MKS Units) (Continued)

Property	Value	Variable Name
CS2 Origin	$\left[\begin{array}{llll}0.063 & 0.597 & 0\end{array}\right]$ from CS1	cs2_1
CG Orientation	$\left[\begin{array}{lll}0 & 0 & 83.1\end{array}\right]$ from WORLD	orientcg_1

Bar2 Mass and Body CS Data (MKS Units)

Property	Value	Variable Name
Mass	9.028	m_{-2}
Inertia tensor	$\left.\begin{array}{llllll}1.8 \mathrm{e} & -3 & 0 & 0 ; & 0 & 0.678 \\ 0 & 0 & 0.678\end{array}\right]$	inertia_2
CG Origin	$\left[\begin{array}{llll}-0.427 & 0.242 & 0\end{array}\right]$ from CS1	cg_2
CS1 Origin	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ from ADJOINING	cs1_2
CS2 Origin	$\left[\begin{array}{lllll}-0.87 & 0.493 & 0\end{array}\right]$ from CS1	cs2_2
CG Orientation	$\left[\begin{array}{lll}0 & 0 & 29.5\end{array}\right]$ from WORLD	orientcg_2

Bar3 Mass and Body CS Data (MKS Units)

Property	Value	Variable Name
Mass	0.991	m_3
Inertia tensor	$\begin{aligned} & {\left[\begin{array}{lll} 2.06 e-4 & 0 & 0 ; \end{array} 01.1 \mathrm{e}-30\right.} \\ & 001.1 e-3] \end{aligned}$	inertia_3
CG Origin	[-0.027-0.048 0] from CS1	cg_3
CS1 Origin	[00000$]$ from ADJOINING	cs1_3
CS2 Origin	[0000$]$ from ADJOINING	cs2_3
CG Orientation	[00060] from WORLD	orientcg_3

Configuring the Bodies

Here are the common steps for configuring the Body dialogs of all three bars.
See the three preceding tables for Body dialog box mass property (mass and
inertia tensor) entries. The units are MKS: lengths in meters (m), masses in kilograms (kg), and inertia tensors in kilogram-meters ${ }^{2}\left(\mathrm{~kg}-\mathrm{m}^{2}\right)$.

1 Open all three Body dialogs for each bar. Enter the mass properties for each from the tables in the Mass and Inertia tensor fields.

2 Now work in the Body coordinate systems area, the Position pane:
a Set the Components in axes of menu, for each Body CS on each bar, to WORLD.
b Leave units as default m (meters).
3 Set the Body CS properties for each Body CS on each bar from the data of the preceding tables:
a Enter the Body CS origin position data for CG, CS1, and CS2 on each bar from the tables or from the corresponding MAT-file variables.
b Set the Translated from origin of menu entries for each Body CS on each bar according to the "from" information in the tables.

4 Select the Orientation pane by clicking its tab:
a Enter the Orientation vector for the CG on each bar from the tables or from the corresponding MAT-file variables.
b Choose WORLD for Relative to coordinate system in each case.

c Leave the other fields in their default values.

Block Parameters : Bar3

Description
Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body andfor connected Joints are actuated separately.

The front view of the four bar mechanism, with the bodies rendered as equivalent ellipsoids, looks like this:

Sensing Motion and Running the Model

You finish building your model by setting initial conditions and inserting Sensors.

Before you start a machine simulation, you need to set its kinematic state or initial conditions. These include positions/angles and linear/angular velocities. This information, the machine's initial kinematic state, is discussed further in "Kinematics and the Machine's State of Motion" on page 3-2 and "Modeling Actuators" on page 4-42.

You can sense motion in any model in two basic ways: sensing bodies or sensing joints. Here you sense Joint motion, using Joint Sensor blocks and feeding their Simulink signal outputs to Scope blocks.

Caution Because they are immobile, ground points cannot be moved, nor do they have any motion to measure.

Therefore you cannot connect Ground blocks to Actuator or Sensor blocks.

Connecting the Joint Sensors

To sense the motion of the Revolute2 and Revolute3 blocks,
1 From the Sensors \& Actuators library, drag and drop two Joint Sensor blocks into the model window. Drag Joint Sensor next to Revolute2 and Joint Sensor1 next to Revolute3.

2 Before you can attach a Joint Sensor block to a Revolute block, you need to create a new open round connector port O on the Revolute. Open Revolute2's dialog box:
a In the Connection parameters area in the middle, adjust the spinner menu Number of sensor/actuator ports to the value 1. Click OK.
A new connector port \circ appears on Revolute2.
b Connect this connector port to the open round connector port on Joint Sensor.

3 Now repeat the same steps with Revolute3:
a Create one new connector port \circ on Revolute 3.
b Connect this port to Joint Sensor1.
4 Be sure to connect the outports > of the Sensor blocks to non-SimMechanics blocks. These ports are normal Simulink signals.

Graphical Plot of Joint Motion with a Scope Block

Here you can view the Joint Sensor measurements of Revolute2 and Revolute3's motions using a Scope block from the Simulink Sinks library:

1 Open the Simulink Library Browser. From the Sinks library, drag and drop a Scope block into your model window in between Joint Sensor and Joint Sensor1 blocks. Rename the Scope block "Angle".

2 Open the Angle block. In this scope window's toolbar, open the Parameters box. Under Axes, reset Number of axes to 2. Click OK. A second inport > appears on the Angle block.

3 Expand the scope window for ease of viewing.
4 Connect the Joint Sensor and Joint Sensor1 block outports > to the Angle block inports >.

5 Open Joint Sensor and Joint Sensor1:
a In the Measurements area, Connected to primitive is set to R1 in both blocks, indicating the first and only primitive revolute inside Revolute2 and Revolute3 to which each Sensor can be connected.
b Select the Angle check box to measure just the angle. Leave the units in default as deg (degrees). The Simulink line will contain one scalar.

Your completed model should look similar to the mech_four_bar demo model.

Caution Sensor and Actuator blocks are the only blocks that can connect SimMechanics blocks to non-SimMechanics Simulink blocks.

Configuring and Running the Simulation

Now take the final steps to prepare and start the model:
1 In the model window Simulation menu, select Configuration Parameters:
a In the Solver node, change Absolute tolerance to 1e-6.
b Leave the other defaults and click OK.
2 Now run the model by clicking Start in the Simulink toolbar. The four bar machine will fall under the influence of gravity.
Note some features of the simulation:

- In this example, the machine starts from rest, with the initial velocities at zero. So the initial state of the four bar machine is just the geometric state that you set up in "Setting Up the Block Diagram" on page 2-40.
- The assembly at first falls over to the right, and the Revolute2 angle decreases.
- Bar3 turns all the way around, and Bar2 and Bar1 turn back to the left. The Revolute 2 angle reverses direction. Revolute 3 sweeps through a complete turn. Angles are mapped to the interval $\left(-180^{\circ},+180^{\circ}\right]$ and exhibit discontinuities.
- The motion repeats periodically, as there is no friction.

Animation

If you leave your visualization window open at the time you start the simulation and select the Animate machine during simulation check box in the SimMechanics node of the Configuration Parameters dialog, the visualized machine moves in step with the simulation.

You can now compare the animated motion with the Scope plots of the Revolute2 and Revolute3 angles.

For More About the Four Bar Machine

The four bar system is also discussed in the context of advanced SimMechanics features and methods: "Modeling Joints" on page 4-17, "Checking Model Validity" on page 4-68, "Finding Forces from Motions" on page 8-6, "Trimming Mechanical Models" on page 8-16, and "Linearizing Mechanical Models" on page 8-28.

Representing Motion

This chapter explains how SimMechanics represents body position, orientation, and motion. It connects mechanics concepts commonly used in physics and engineering with specific SimMechanics implementations. The last section is a case study on configuring a SimMechanics Body block to represent position and orientation.

This chapter assumes some familiarity with mechanics and vector analysis. You should work through it as a single unit.

Kinematics and the Machine's State of Motion (p. 3-2)

Body Motion in SimMechanics (p. 3-3)

How SimMechanics Represents Body Orientation (p. 3-9)

Orienting a Body and Its Coordinate Systems (p. 3-15)

How SimMechanics implements kinematic states

How SimMechanics represents translational and rotational motion

Ways to represent body rotations in SimMechanics and convert one representation into another

Examples of configuring the geometric properties of a body

Kinematics and the Machine's State of Motion

Kinematics is the description of a machine's motion without regard to forces, torques, and the mass properties of bodies. Because accelerations are proportional to forces and torques, if you know the mass properties of the bodies and the forces and torques applied to them, you only need the positions and their first derivatives (velocities) to integrate a machine's motion.

The State of Motion

The state of motion of a mechanical system is the set of the instantaneous positions and orientations of all its bodies and their linear and angular velocities. In SimMechanics, body positions/orientations are relative: one body's state is specified relative to its neighbors. The absolute positions and velocities of the bodies' states are determined via the machine's connections to one or more grounds. These grounds are at rest in World, although they do not have to coincide with the World origin.

Degrees of Freedom

The relative position and orientation of a body with respect to a neighbor constitute up to six degrees of freedom (DoFs). The fundamental DoFs are translational (one body sliding relative to another along a prismatic axis) and rotational (one body rotating relative to another about a revolute axis, or one body pivoting relative to another about a spherical pivot point).

SimMechanics represents DoFs by Joint blocks connected between Body blocks. Bodies without Joints have no DoFs in SimMechanics and acquire DoFs only by having Joints connected to them. SimMechanics represents the machine's motion state by the positions (prismatics), angles (revolutes or sphericals), and their first derivatives with respect to time (velocities).

For More Information

For a detailed explanation of how to represent body motions, see the section following, "Body Motion in SimMechanics" on page 3-3.

Refer also to "Counting Degrees of Freedom" on page 4-71 and the command reference for mech_stateVectorMgr for identification of DoFs in SimMechanics and elaboration of the machine state.

Body Motion in SimMechanics

This section summarizes observer coordinate systems, measuring body motion, forms of body rotation, and how SimMechanics represents the state of a body's motion. It assumes a basic knowledge of vector algebra and analysis. The books of Goldstein [2] and Murray, Li, and Sastry [11] present coordinate transformations, rotations, and rigid body kinematics in detail. The preceding section, "Kinematics and the Machine's State of Motion" on page 3-2, should also be helpful.

How to Read This Section

Each topic in this section builds on the last one. Therefore, it is recommended that you scan linearly through the whole section, then read it in detail.

- "Reference Frames and Coordinate Systems"
- "Relating Coordinate Systems in Relative Motion" on page 3-4
- "Observing Body Motion in Different Coordinate Systems" on page 3-6
- "Representing Body Translations and Rotations" on page 3-7

Overview of Machine Motion

All vectors and tensors (matrices), unless otherwise noted, are Cartesian (rectangular) with three and nine, respectively, spatial components measured by rectangular coordinate axes.

Machines are composed of bodies, which have relative degrees of freedom (DoFs). Bodies have positions, orientations, mass properties, and sets of Body coordinate systems. Joints represent the motions of the bodies.

- A machine's geometry consists of its static body features before starting a simulation: positions, orientations, and Body coordinate systems.
- A machine's kinematics consist of the positions/orientations and their derivatives of all degrees of freedom (DoFs) of all bodies at any instant during the machine's motion.

The full description of a machine's motion includes not only its kinematics, but specification of its observers, who define reference frames (RFs) and coordinate systems (CSs) for measuring the machine motion.

Reference Frames and Coordinate Systems

The reference frame of an observer is an observer's state of motion, which has to be measured by other observers. SimMechanics simulates a machine's motion using its Newtonian dynamics, which takes its simplest form in the special set of inertial RFs, the set of all frames moving at uniform velocities with respect to one another. Within an RF, you can pick any point as a coordinate system origin, then set up Cartesian (orthogonal) axes there.

SimMechanics uses a master inertial RF called World. A CS origin and axis triad are also defined in World. World can mean either the RF or the CS, although in most contexts, it means the World coordinate system. For SimMechanics, World defines absolute rest and a universal coordinate origin and axes independent of any bodies and grounds in a machine.

Relating Coordinate Systems in Relative Motion

Now add a second CS, called O, whose origin is translating with respect to the World origin and whose axes are rotating with respect to the World axes. In the following steps, this second CS is identified with a CS fixed in a moving body. (See "Representing Body Translations and Rotations" on page 3-7.)

A vector \boldsymbol{C} represents the origin of O. Its head is at the O origin and its tail at the World origin. The O origin translates as some arbitrary function of time $\boldsymbol{C}(t)$.

The orthogonal unit vectors $\{\mathbf{u}(\mathrm{x}), \mathbf{u}(\mathrm{y}), \mathbf{u}(\mathrm{z})\}$ define the coordinate axes of O.

- This set is tilted with respect to the World coordinate axes X, Y, Z, with unit vectors $\{\mathbf{e}(\mathbf{x}), \mathbf{e}(\mathrm{y}), \mathbf{e}(\mathrm{z})\}$. The tilt changes with time.
- You can express the set $\{\mathbf{u}(\mathrm{x}), \mathbf{u}(\mathrm{y}), \mathbf{u}(\mathrm{z})\}$ as a linear combination of the basis $\{\mathbf{e}(\mathrm{x}), \mathrm{e}(\mathrm{y}), \mathbf{e}(\mathrm{z})\}$ in terms of nine coefficients:

$$
\begin{aligned}
& \mathbf{u}(\mathrm{x})=R_{\mathrm{xx}} \mathbf{e}(\mathrm{x})+R_{\mathrm{yx}} \mathbf{e}(\mathrm{y})+R_{\mathrm{zx}} \mathbf{e}(\mathrm{z}) \\
& \mathbf{u}(\mathrm{y})=R_{\mathrm{xy}} \mathbf{e}(\mathrm{x})+R_{\mathrm{yy}} \mathbf{e}(\mathrm{y})+R_{\mathrm{zy}} \mathbf{e}(\mathrm{z}) \\
& \mathbf{u}(\mathrm{z})=R_{\mathrm{xz}} \mathbf{e}(\mathrm{x})+R_{\mathrm{yz}} \mathrm{e}(\mathrm{y})+R_{\mathrm{zz}} \mathrm{e}(\mathrm{z})
\end{aligned}
$$

These are relationships between vectors (not vector components) and are independent of the reference frame and coordinate system.

- You obtain the components of the u's in World by taking the scalar products of the u's with the e's:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{x}}(\mathrm{x})=R_{\mathrm{xx}}, \mathrm{u}_{\mathrm{y}}(\mathrm{x})=R_{\mathrm{yx}}, \mathrm{u}_{\mathrm{z}}(\mathrm{x})=R_{\mathrm{zx}} \\
& \mathrm{u}_{\mathrm{x}}(\mathrm{y})=R_{\mathrm{xy}}, \mathrm{u}_{\mathrm{y}}(\mathrm{y})=R_{\mathrm{yy}}, \mathrm{u}_{\mathrm{z}}(\mathrm{y})=R_{\mathrm{zy}} \\
& \mathrm{u}_{\mathrm{x}}(\mathrm{z})=R_{\mathrm{xz}}, \mathrm{u}_{\mathrm{y}}(\mathrm{z})=R_{\mathrm{yz}}, \mathrm{u}_{\mathrm{z}}(\mathrm{z})=R_{\mathrm{zz}}
\end{aligned}
$$

The time-dependent R coefficients represent the orientation of the u's with respect to the e's. You can use the labels $(1,2,3)$ as equivalents for (x, y, z).

- The components of any vector \mathbf{v} measured in World are $\mathbf{e}(\mathbf{i}) * \mathbf{v}$. Represent them by a column vector, $\mathbf{v}_{\text {World }}$. The components of \mathbf{v} in O are $\mathbf{u}(\mathbf{i}) * \mathbf{v}$. Represent them by a column vector, \mathbf{v}_{O}. The two sets of components are related by the matrix transformation $\mathbf{v}_{\text {World }}=R * \mathbf{v}_{\mathrm{O}}$. The coefficients R form a matrix whose columns are the components of the u's in World:

$$
R=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]=\left[\begin{array}{lll}
R x x & R x y & R x z \\
R y x & R y y & R y z \\
R z x & R z y & R z z
\end{array}\right]
$$

The orthogonality and unit length of the u's guarantee that R is an orthogonal rotation matrix satisfying $R R^{\mathrm{T}}=R^{\mathrm{T}} R=I$, the identity matrix. R^{T} is the transpose of R (switch rows and columns). Thus $R^{-1}=R^{\mathrm{T}}$.

- Rotations always follow the right-hand rule.

Observing Body Motion in Different Coordinate Systems

To the two observer CSs, World and O, now add a third point $\boldsymbol{p}(t)$ in arbitrary motion. \boldsymbol{p} could represent a point mass, the center of gravity (CG) of an extended body, or a point fixed in a moving rigid body, for example. The two observers describe the motion of this point in different ways, related to one another by time-dependent World-to- O coordinate transformations.

The motion of \boldsymbol{p} is given by its column vector components in some CS. The components of \boldsymbol{p} as measured in World are a column vector $\boldsymbol{p}_{\text {World }}$ and, measured in O, are a column vector $\boldsymbol{p}_{\mathrm{O}}$. The two descriptions are related by

$$
\boldsymbol{p}_{\mathrm{World}}(t)=\boldsymbol{C}_{\mathrm{World}}(t)+\boldsymbol{R}(t) * \boldsymbol{p}_{\mathrm{O}}(t)
$$

Thus the motion as measured by $\boldsymbol{p}_{\text {World }}$, when transformed and observed by O as $\boldsymbol{p}_{\mathrm{O}}$, has additional time dependence arising from $\boldsymbol{C}(t)$ and $R(t)$.

Relating Velocities Observed in Different Coordinate Systems

Differentiate the relationship between $\boldsymbol{p}_{\text {World }}$ and $\boldsymbol{p}_{\mathrm{O}}$ once with respect to time. The result relates the velocity of \boldsymbol{p} as measured by O to the velocity as measured in World.

$$
\mathrm{d} \boldsymbol{p}_{\text {World }} / \mathrm{dt}=\mathrm{d} \boldsymbol{C}_{\mathrm{World}} / \mathrm{dt}+R * \mathrm{~d} \boldsymbol{p}_{\mathrm{O}} / \mathrm{dt}+\mathrm{d} R / \mathrm{dt} * \boldsymbol{p}_{\mathrm{O}}
$$

The section "The Angular Velocity of a Body from Its Rotation Matrix" on page 3-7 explains how to express the third term in a simpler form.

Representing Body Translations and Rotations

Next consider the special case essential for describing the rigid body motions simulated by SimMechanics: the moving point \boldsymbol{p} is fixed in the body itself. Let O be the center of gravity coordinate system (CG CS) of an extended rigid body (the origin of O at the CG itself) and let \boldsymbol{p} be a point fixed somewhere in the same body. This body-fixed point is denoted by \boldsymbol{b} in this special case. Because a moving body in general accelerates both translationally and rotationally, the CG CS is noninertial.

The rotation matrix R now describes the rotational motion of the body in terms of the rotation of the CG CS axes with respect to the World axes. Furthermore, because \boldsymbol{b} is now fixed in the body itself, it does not move in O. All of its motion as seen by World is due to R and \boldsymbol{C}, and $\mathrm{d} \boldsymbol{b}_{\mathrm{O}} / \mathrm{dt}=0$.

The Angular Velocity of a Body from Its Rotation Matrix

Continue to identify O with the body CG CS and \boldsymbol{b} as a point fixed in the body. The vector components of \boldsymbol{b} are observed by World as $\boldsymbol{b}_{\text {World }}$ and by the CG CS as $\boldsymbol{b}_{\text {Body }}$. In the body, the point is immobile: $\mathrm{d} \boldsymbol{b}_{\text {Body }} / \mathrm{dt}=0$. Its velocity observed by World is composed of the translational and rotational motion of the entire rigid body.

$$
\mathrm{d} \boldsymbol{b}_{\mathrm{World}} / \mathrm{dt}=\mathrm{d} \boldsymbol{C}_{\mathrm{World}} / \mathrm{dt}+\mathrm{d} R / \mathrm{dt} * \boldsymbol{b}_{\text {Body }}
$$

Because $R R^{\mathrm{T}}=I,(\mathrm{~d} R / \mathrm{dt}) * R^{\mathrm{T}}+R *\left(\mathrm{~d} R^{\mathrm{T}} / \mathrm{dt}\right)=0$. Insert $R^{\mathrm{T}} R=I$ to the left of $\boldsymbol{b}_{\text {Body }}$ and define an antisymmetric matrix $\Omega=+(\mathrm{d} R / \mathrm{dt}) * R^{\mathrm{T}}=-R^{*}\left(\mathrm{~d} R^{\mathrm{T}} / \mathrm{dt}\right)$. Its components are $\Omega_{\mathrm{ik}}=+\Sigma_{\mathrm{j}} \varepsilon_{\mathrm{ijk}} \omega_{\mathrm{j}}$.

$$
\Omega=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

where ω is the body's angular velocity in the World CS.

$$
\begin{aligned}
\mathrm{d} \boldsymbol{b}_{\text {World }} / \mathrm{dt} & =\mathrm{d} \boldsymbol{C}_{\text {World }} / \mathrm{dt}+\Omega * R * \boldsymbol{b}_{\text {Body }} \\
& =\mathrm{d} \boldsymbol{C}_{\text {World }} / \mathrm{dt}+\omega_{\text {World }} \mathbf{x}\left(R * \boldsymbol{b}_{\text {Body }}\right)
\end{aligned}
$$

The motion of $\boldsymbol{b}_{\text {Body }}$ decomposes into the motion of the body's CG plus the angular rotation of $\boldsymbol{b}_{\text {Body }}$ relative to the CG, all measured in World.

The Permutation Symbol ε and the Vector Cross Product

The permutation symbol $\varepsilon_{i j k}$ is +1 if $i j k$ is an even permutation (123 or any cyclic permutation thereof) and -1 if $i j k$ is an odd permutation (321 or any cyclic permutation thereof). It changes sign upon switching any two indices and vanishes if any two indices are equal. The components of the cross (vector) product $\mathbf{c}=\mathbf{a X} \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} are $c_{\mathrm{i}}=\Sigma_{\mathrm{jk}} \varepsilon_{\mathrm{ijk}} a_{\mathrm{j}} b_{\mathrm{k}}$.

How SimMechanics Represents Body Orientation

In SimMechanics, you represent a body's orientation by specifying the tilt of its center of gravity coordinate system (CG CS) axes relative to some other set of axes, either the CS axes of an adjoining body or the World CS axes. Zero tilt is represented by "no rotation" or the rotational identity.

A general rotation of a body in three dimensions has three independent degrees of freedom. There are many ways to represent these degrees of freedom. SimMechanics uses the following forms in the Body and related Body Sensor and RotationMatrix2VR blocks. The block reference pages for these blocks discuss block-specific details.

- Axis-Angle Form
- Quaternion Form
- Rotation Matrix Form
- Euler Angle Form

The rotation representations are equivalent and convertible to one another:

- "Converting Rotation Representations" on page 3-11

Axis-Angle Form

The axis-angle form of a rotation is the most basic representation. Specify a rotation axis \mathbf{n}, then rotate by the right-hand rule about that axis by some angle θ. The vector $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ is a three-component unit vector, where $\mathbf{n} * \mathbf{n}=1$.

SimMechanics does not make direct use of the axis-angle form, but this representation is the starting point for deriving other forms. It is also used extensively in mechanical applications such as computer-aided design and robotics.

The axis-angle form is usually written as a 4 -vector: $\left[n_{x} n_{y} n_{z} \theta\right]$. Of the four numbers, three are independent, because $\mathbf{n} * \mathbf{n}=n_{x}{ }^{2}+n_{y}{ }^{2}+n_{z}{ }^{2}=1$. That is, \mathbf{n} specifies only a direction, not a length.

To describe continuous rotation in time, you treat \mathbf{n} and θ as functions of time.

Quaternion Form

A quaternion represents a three-dimensional rotation as a four-component row vector of unit length:

$$
q=\left[n_{x}{ }^{*} \sin (\theta / 2) n_{y}{ }^{*} \sin (\theta / 2) n_{z}{ }^{*} \sin (\theta / 2) \cos (\theta / 2)\right]=\left[\boldsymbol{q}_{\mathrm{V}} q_{\mathrm{S}}\right]
$$

with $q^{*} q=\boldsymbol{q}_{\mathrm{v}}{ }^{*} \boldsymbol{q}_{\mathrm{V}}+q_{\mathrm{S}}{ }^{2}=1$. This definition uses the axis-angle form defined above. The rotation angle about that axis is θ. To describe continuous rotation in time, you treat \mathbf{n} and θ as functions of time.

Rotation Matrix Form

The axis-angle form can also define the rotation matrix R written in the exponential form $R=\exp (\theta \mathbf{n} * \boldsymbol{J})$, where the J^{k} are real, antisymmetric matrices, and $\mathbf{n} * \boldsymbol{J}=n_{x} J^{1}+n_{y} J^{2}+n_{z} J^{3}$. The rotation matrix R is orthogonal: $R R^{\mathrm{T}}=R^{\mathrm{T}} R=I$.

The J matrices are related to the antisymmetric permutation symbol $\varepsilon_{\mathrm{ijk}}$.

$$
\left(J^{j}\right)_{\mathrm{ik}}=\varepsilon_{\mathrm{ijk}}
$$

The formal exponential for R is reduced to a closed form by the Rodrigues identity:

$$
R=\exp (\theta \mathbf{n} * \boldsymbol{J})=I+(\mathbf{n} * \boldsymbol{J}) \sin \theta+(\mathbf{n} * \boldsymbol{J})^{2}(1-\cos \theta)
$$

where I is the identity matrix and $\mathbf{n} * \boldsymbol{J}$ is given by

$$
\mathbf{n} * \boldsymbol{J}=\left[\begin{array}{ccc}
0 & -n_{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & n_{x} & 0
\end{array}\right]
$$

The inverse of R is identical to its transpose R^{T}. But you can also obtain the inverse by replacing θ with $-\theta$ or by reversing the direction of \mathbf{n}.

To describe continuous rotation in time, you treat \mathbf{n} and θ as functions of time.

Euler Angle Form

An alternative representation for R is to rotate, in succession, about three independent axes, by three independent Euler angles. The full rotation R relative to World composes by multiplying the matrices successively on the left:

$$
R=R_{3} * R_{2} * R_{1}
$$

The full rotation R relative to the body composes by multiplying the matrices successively on the right:

$$
R=R_{1} * R_{2} * R_{3}
$$

An important Euler angle convention is to
1 Rotate about one body coordinate axis (which rotates the other two).
2 Then rotate about a second body coordinate axis (rotated from its original direction).

3 Lastly, rotate about the first body coordinate axis again (which axis has been rotated into a new direction by the second rotation).

The rotation axis sequence $Z-X-Z$ is the most common, using ϕ, θ, ψ as the first, second, and third angles, respectively: $R=R_{1}(\phi) * R_{2}(\theta) * R_{3}(\psi)$.

A two-dimensional rotation about a fixed axis requires one angle. For example, rotating the x - and y-axes about the z-axis by ϕ is represented by

$$
R(\phi)=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

To describe continuous rotation in time, you treat the Euler angles as functions of time.

Converting Rotation Representations

The four rotation representations presented in this section are equivalent. You can represent any given rotation equally well with any one of them. Some applications, however, tend to favor one form over the others, and it is helpful
to know how to convert the various rotation representations into one another. The following summaries group the conversion formulas into one place.

The Body block makes direct use of the Euler angle, rotation matrix, and quaternion forms. The Body Sensor block makes use of the rotation matrix. The RotationMatrix2VR block uses the rotation matrix and axis-angle forms.

Transforming the Axis-Angle Form

The rotation axis unit vector \mathbf{n} and the rotation angle θ define this form, which is discussed in detail in "Axis-Angle Form" on page 3-9. This representation defines the quaternion and rotation matrix forms:

$$
\begin{aligned}
& q=\left[n_{x}^{*} \sin (\theta / 2) \quad n_{y}^{*} \sin (\theta / 2) \quad n_{z}^{*} \sin (\theta / 2) \cos (\theta / 2)\right] \\
& R=\exp (\theta \mathbf{n} * \boldsymbol{J})=I+\left(\mathbf{n}^{*} \boldsymbol{J}\right) \sin \theta+\left(\mathbf{n}^{*} \boldsymbol{J}\right)^{2}(1-\cos \theta) \\
& \mathbf{n}^{*} \boldsymbol{J}=\left[\begin{array}{ccc}
0 & -n_{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & n_{x} & 0
\end{array}\right]
\end{aligned}
$$

Transforming the Quaternion Form

The quaternion is a vector-scalar pair, $q=\left[\boldsymbol{q}_{\mathrm{v}} q_{\mathrm{S}}\right]$, defined by "Quaternion Form" on page 3-10. You can recover the axis-angle representation from the quaternion components:

$$
\begin{aligned}
& \theta=2^{*} \cos ^{-1}\left(q_{\mathrm{S}}\right) \\
& \mathbf{n}=\boldsymbol{q}_{\mathrm{V}} / \sqrt{1-q_{\mathrm{S}}{ }^{2}}
\end{aligned}
$$

You can also construct the equivalent rotation matrix R from q.

$$
\begin{aligned}
& R=\left(2 q_{\mathrm{S}}^{2}-1\right) I+2 q_{\mathrm{S}} \mathrm{Q}_{\mathrm{V}}+2 \boldsymbol{q}_{\mathrm{V}}^{\mathrm{T}} \otimes \boldsymbol{q}_{\mathrm{V}} \\
& \left(\mathrm{Q}_{\mathrm{v}}\right)_{\mathrm{ik}}=\Sigma_{\mathrm{j}} \varepsilon_{\mathrm{ijk}}\left(\boldsymbol{q}_{\mathrm{V}}\right)_{\mathrm{j}}
\end{aligned}
$$

The term $\boldsymbol{q}_{\mathrm{V}}{ }^{\mathrm{T}} \otimes \boldsymbol{q}_{\mathrm{V}}$ is the outer product of $\boldsymbol{q}_{\mathrm{V}}$ with itself, the 3-by-3 matrix of $\boldsymbol{q}_{\mathrm{V}}$ components multiplied by each other.

Transforming the Rotation Matrix Form

The rotation matrix R is an orthogonal 3-by-3 matrix: $R R^{\mathrm{T}}=R^{\mathrm{T}} R=I$, defined in "Rotation Matrix Form" on page 3-10. You can invert the rotation matrix representation to obtain the equivalent representations for the quaternion $q=$ $\left[\boldsymbol{q}_{\mathrm{V}} q_{\mathrm{S}}\right]$ and axis-angle (\mathbf{n}, θ):

$$
\begin{aligned}
& q_{\mathrm{S}}=\left(\frac{1}{2}\right) \sqrt{\operatorname{Tr}(R)+1} \\
& \boldsymbol{q}_{\mathrm{v}}=\operatorname{Tr}(\boldsymbol{J} * R) /(2 \sqrt{\operatorname{Tr}(R)+1}) \\
& \theta=2 * \cos ^{-1}\left(\left(\frac{1}{2}\right) \sqrt{\operatorname{Tr}(R)+1}\right) \\
& \mathbf{n}=\operatorname{Tr}(\boldsymbol{J} * R) /(\sqrt{\operatorname{Tr}(R)+1} \cdot \sqrt{3-\operatorname{Tr}(R)})
\end{aligned}
$$

The trace Tr of a matrix is the sum of its diagonal elements.
The \boldsymbol{J} matrices constitute a 3 -vector of matrices defined by the antisymmetric permutation symbol, $\left({ }^{j}\right)_{i k}=\varepsilon_{i j k}$. See "The Permutation Symbol e and the Vector Cross Product" on page 3-8 for more about the permutation symbol.

The RotationMatrix2VR block converts the rotation matrix to the axis-angle form.

Transforming the Euler Angle Form

The Euler angle representation of a rotation, defined by "Euler Angle Form" on page 3-11, stands apart from the other three, insofar as you cannot derive it from the axis-angle form. It depends on the choice of rotation axis sequence, which generates multiple definition conventions.

If you choose a convention and three angles, then compute R, you can convert R to the other forms by the use of "Transforming the Rotation Matrix Form" above. But given the nine components of R, you must find the Euler angles by inverting the nine equations that result from this matrix equation. (Only three equations of the nine are independent.) In some cases, angles can be read from R by inspection.

For example, choose rotations with respect to a Body coordinate system (CS) triad, in the commonly-used rotation axis sequence $Z-X-Z$, with ϕ, θ, ψ as the first, second, and third angles. The rotation matrix is $R=R_{1}(\phi) * R_{2}(\theta) * R_{3}(\psi)$,

$$
\begin{aligned}
R(\phi, \theta, \psi) & =\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \phi \cos \psi-\sin \phi \cos \theta \sin \psi & -\cos \phi \sin \psi-\sin \phi \cos \theta \cos \psi & 0 \\
\sin \phi \cos \psi+\cos \phi \cos \theta \sin \psi-\sin \phi \sin \psi+\cos \phi \cos \theta \cos \psi & 0 \\
\sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta
\end{array}\right]
\end{aligned}
$$

In this convention, you can read θ from the R_{33} component, then find ψ from the R_{32} or R_{31} component. Obtain ϕ from one of the other components, using $\cos ^{2} \phi+\sin ^{2} \phi=1$, or by multiplying from the right by $R_{3}(\psi)^{\mathrm{T}}$, then $R_{2}(\theta)^{\mathrm{T}}$. The second method yields a unique solution for the sine and cosine of ϕ.

Orienting a Body and Its Coordinate Systems

This section shows you a set of examples of orienting a test body and its attached coordinate systems (CSs). It makes detailed use of the rotation representations and conversions explained in "How SimMechanics Represents Body Orientation" on page 3-9, and shows how to use MATLAB workspace variables in your SimMechanics block dialogs.

- "Setting Up the Test Body"
- "Rotating The Body and Its CG CS Relative to World" on page 3-17
- "Rotating the Body Relative to Its Center of Gravity" on page 3-18
- "Creating and Rotating Body Coordinate Systems" on page 3-20

This sequence of examples assumes you are familiar with the basics of setting up and visualizing bodies and machines. See the tutorials of the "Building and Visualizing Simple Machines" chapter and the Body block reference. Look for complete instructions on modeling and visualizing machines in the "Modeling Mechanical Systems" and "Visualizing and Animating Machines" chapters.

Setting Up the Test Body

The later examples require a configured body to work with. Here you set up a simple body with one Body coordinate system (CS), located at the center of gravity (CG). First, create, connect, and visualize the initial body:

1 Open the SimMechanics block library and a new Simulink model window.
2 Drag and drop a Machine Environment, a Ground, and a Body block, as well as any Joint block you want, into your model window.

3 Open the Body dialog. In the Body coordinate systems area, delete the Body CS named CS2. Deselect the Show port check box for CS1.

Leave the other defaults. The CG CS is located at Origin position vector [000]. Select Show port for the CG CS. Click Apply.

4 Open the Ground and select Show Machine Environment port. Click OK. Connect Ground to Machine Environment at the new Machine Environment port.

5 Connect the Body block at its CG CS port, through the Joint block, to Ground at its grounded CS port.

6 From the Simulation menu, open Configuration Parameters to the SimMechanics node. In the Visualization area, select the Update machine visualization on update diagram check box. Click OK.

7 From the Edit menu, select Update Diagram. When the window opens, open the SimMechanics menu, deselect Convex Hulls, and select Ellipsoids. The window now displays a sphere.

Now configure the body's mass and geometric properties:
1 In the Body dialog's Mass properties area, enter 11.5 kg for the mass and [1800; 0 560; 0 0 56] $\mathrm{kg}^{*} \mathrm{~m}^{2}$ for the inertia. Click Apply.

2 Update your diagram. The body in the window changes to an ellipsoid, with (x, y, z) axes of length $2.02,0.885$, and 0.885 meters (m), respectively.

Turn off the ellipsoid surface to see the CG CS triad alone. The x-, y-, and z-axes are red, green, and blue, respectively.

Test Body Ellipsoid: Initial Orientation, with Detail of CG CS Axes

Rotating The Body and Its CG CS Relative to World

In this example, you rotate the body, along with its CG CS axes, with respect to the World CS. The CG CS axes continue to have the same orientation with respect to the body shape. The rotation is a positive turn of 75 deg (degrees) about the axis $(1,1,1)$ in World. In this example, you rotate with a quaternion.

Computing the Rotation as a Quaternion

The unit vector \mathbf{n} in the $(1,1,1)$ direction is $(1,1,1) / \sqrt{3}$. The rotation angle is $\theta=75 \mathrm{deg}=1.3090 \mathrm{rad}$. At the MATLAB command line, define th $=\mathrm{pi} * 75 / 180$ and compute the quaternion components:

```
>> q = [sin(th/2)/sqrt(3) sin(th/2)/sqrt(3) sin(th/2)/sqrt(3) ...
cos(th/2)]
q =
    0.3515 0.3515 0.3515 0.7934
```


Rotating the Body and Its CG CS Axes with the Quaternion

To rotate the body and the CG CS coordinate axes together by this rotation,
1 In the Body dialog, click the Orientation tab in the Body coordinate systems area. Under the Specified using convention pull-down menu, select Quaternion.

2 Under Orientation vector, enter q. Leave the other defaults. The Relative to coordinate system field indicates that the rotation represented by q is oriented with respect to the World axes. Click Apply.

3 Update the diagram. The body and its CG CS rotate together relative to World:

Test Body Ellipsoid: Body and Its CG CS Axes Rotated Together

4 Now rotate the body and its CG CS back to the original orientation by entering [00001 1] under Orientation vector and clicking Apply. Update your diagram to refresh the visualization.

Rotating the Body Relative to Its Center of Gravity

You can also rotate the body without rotating its CG CS axes. To accomplish this requires leaving the Body CSs unchanged while rotating the body's inertia tensor relative to the CG CS. Here you use the same rotation as in the preceding example, but represent it as a rotation matrix.

Computing the Rotation as a Rotation Matrix

The unit vector \mathbf{n} in the $(1,1,1)$ direction is $(1,1,1) / \sqrt{3}$. The rotation angle is $\theta=75 \mathrm{deg}=1.3090 \mathrm{rad}$. Compute the rotation matrix:

```
>> nDotJ = [0 -1/sqrt(3) 1/sqrt(3); 1/sqrt(3) 0 -1/sqrt(3); ...
-1/sqrt(3) 1/sqrt(3) 0]
nDotJ =
\begin{tabular}{rrr}
0 & -0.5774 & 0.5774 \\
0.5774 & 0 & -0.5774 \\
-0.5774 & 0.5774 & 0
\end{tabular}
>> R = eye(3) + nDotJ*sin(th) + nDotJ^2*(1-cos(th))
R =
    0.5059 -0.3106 0.8047
    0.8047 0.5059 -0.3106
    -0.3106 0.8047 0.5059
```


Rotating the Body's Inertia Tensor

The components of the inertia tensor that you enter into the Body dialog are always defined relative to the CG CS axes. If you hold the CG CS axes fixed and rotate the body by a rotation matrix R, the inertia tensor transforms according to $I_{\text {new }}=R * I_{\text {old }} * R^{\mathrm{T}}$. Compute this with MATLAB:

```
>> I = [18 0 0; 0 56 0; 0 0 56]
I =
    18 0 0
            0 56 0
            0 0 56
>> Irot = R*I*R'
Irot =
\begin{tabular}{rrr}
46.2753 & -15.4698 & 5.9711 \\
-15.4698 & 31.3911 & 9.4987 \\
5.9711 & 9.4987 & 52.3336
\end{tabular}
```


Rotating the Body with the Rotation Matrix

To rotate the body alone relative to World and the CG CS:
1 In the Body dialog's Mass properties area, replace the existing inertia tensor with Irot. Click Apply.

2 Update the diagram. The body rotates again, as in the preceding example. But unlike that example, the CG CS axes do not change.

Test Body Ellipsoid: Body Rotated Relative to Its CG CS Axes
3 Now rotate the body back to the original orientation by entering I in the Inertia field and clicking Apply. Update the diagram to refresh the visualization.

Creating and Rotating Body Coordinate Systems

In the preceding examples, you work with only one Body CS, the CG CS. In this example, you set up additional Body CSs and learn how to rotate them. You visualize the body here using convex hulls, instead of ellipsoids, to articulate the Body CSs more clearly. Obtaining a full convex hull, with a surface enclosing a volume, requires at least three Body CSs, in addition to the CG CS.

This example also shows you how to obtain Euler angles and rotate with them.

Creating and Viewing the New Body CSs

To change the visualization rendering to convex hulls,
1 Open the special SimMechanics menu in the visualization window. Select the Machine Display submenu.

2 Deselect Ellipsoids and select Convex Hulls.

To create and visualize the new Body CSs,
1 Go to the Body dialog's Body coordinate systems area. Add three new coordinate systems to the CS list. Name them CS1, CS2, and CS3.

2 For these three CSs, change the Origin position vector fields to [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$, [0 1 0], and [0 0 1], respectively. Click Apply.

3 Update the diagram. The SimMechanics window now renders the body as a tetrahedron composed of four adjoining triangular surfaces.

4 Make the new Body CSs easier to see by turning off the convex hull body surfaces and the axes grid. This step leaves only the Body CS triads and the wire frame outline of the convex hull. All the Body CS triads are oriented the same way, parallel to the CG CS axes and the World axes.

Test Body Convex Hull with CG CS and Three Body Coordinate Systems

Computing the Rotation as a Set of Euler Angles

The preceding examples used two rotation representations, the quaternion and the rotation matrix, based on the axis-angle form. In this example, you use the same rotation as before, but represented as a set of Euler angles.

The rotation axis sequence convention is $Z-X-Z$, with ϕ, θ, ψ as the first, second, and third angles, the same as presented in "Converting Rotation
Representations" on page 3-11. To obtain the angles, you equate the rotation matrix form for that convention:

$$
R(\phi, \theta, \psi)=\left[\begin{array}{ccc}
\cos \phi \cos \psi-\sin \phi \cos \theta \sin \psi & -\cos \phi \sin \psi-\sin \phi \cos \theta \cos \psi & 0 \\
\sin \phi \cos \psi+\cos \phi \cos \theta \sin \psi-\sin \phi \sin \psi+\cos \phi \cos \theta \cos \psi & 0 \\
\sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta
\end{array}\right]
$$

to the numerical form of R you computed in "Rotating the Body Relative to Its Center of Gravity" on page 3-18:

```
R =
    0.5059 -0.3106 0.8047
    0.8047 0.5059 -0.3106
    -0.3106 0.8047 0.5059
```

and invert the resulting equations. The solution for θ and ψ is

```
>> theta = acos(R(3,3))
theta =
    1.0404
>> psi = asin(R(3,1)/sin(theta))
psi =
    -0.3684
```

or about 60 and -21 deg, respectively.
Here is a method that yields a unique solution by using the structure of the Euler convention, $R=R_{1}(\phi) * R_{2}(\theta) * R_{3}(\psi)$. Multiply R on the right by $R_{3}(\psi)^{\mathrm{T}} * R_{2}(\theta)^{\mathrm{T}}$, isolating $R_{1}(\phi)$:
>> R3 = [cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 00 1]
R3 $=$
$0.9329 \quad 0.3601 \quad 0$
$\begin{array}{lll}-0.3601 & 0.9329 & 0\end{array}$
$0 \quad 0 \quad 1.0000$

```
>> R2 = [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)]
R2 =
    1.0000 0 0
        0 0.5059 -0.8626
        0 0.8626 0.5059
>> R1 = R*R3'*R2'
R1 =
    0.3601 -0.9329 -0.0000
    0.9329 0.3601 -0.0000
    0.0000 0.0000 1.0000
>> phi = acos(R1(1,1))
phi =
    1.2024
```

or about 69 deg.

Rotating a Body CS Axis Triad

Here you rotate one of the Body CS axis triads, using the $Z-X-Z$ rotation axis sequence convention and, for Euler angles, the ϕ, θ, and ψ you just found.

1 In the Body dialog's Orientation pane, locate the CS2 entry.
Under Orientation vector, enter [phi theta psi]. In the Units pull-down menu, select rad. In the Specified using convention pull-down menu, select Euler Z-X-Z. Click Apply.

2 Update your diagram. The CS2 axis triad, whose origin continues to be located at ($0,1,0$), now looks like this:

This rotated orientation of the CS2 axis triad is the same as that of the rotated CG CS in "Rotating The Body and Its CG CS Relative to World" on page 3-17. The two rotations are the same and produce the same result.

Modeling Mechanical Systems

SimMechanics gives you a complete set of block libraries for modeling machine parts and connecting them into a Simulink block diagram.

Modeling Machines (p. 4-2)	How to create a mechanical model with SimMechanics and Simulink
Modeling Bodies and Grounds (p. 4-8)	How to represent a machine's mechanical environment and the mass and geometric properties of bodies
Modeling Joints (p. 4-17)	How to represent degrees of freedom as joints
Modeling Constraints and Drivers (p. 4-35)	How to represent time-independent and time-dependent constraints on relative body motions
Modeling Actuators (p. 4-42)	How to apply forces, motions, and initial conditions to machines
Modeling Force Elements (p. 4-58)	How to represent internal forces within machines
Modeling Sensors (p. 4-63)	How to measure motions and forces in machines and create feedback loops to model internal forces
Checking Model Validity (p. 4-68)	Special restrictions and requirements for block diagram models with SimMechanics blocks

Refer to the "Representing Motion" chapter to review body kinematics. If you need more information on rigid body mechanics, consult the physics and engineering literature, beginning with the Bibliography. Classic engineering mechanics texts include Goodman and Warner [3], [4] and Meriam [10]. The books of Goldstein [2] and José and Saletan [6] are more theoretically oriented.

Modeling Machines

In SimMechanics the term machine has two meanings.
It refers to a physical system that includes at least one rigid body. SimMechanics provides a library of Simulink blocks that allow you to create Simulink models of machines.

It also refers to a topologically distinct and separate block diagram representing one physical machine. A model can have one or more machines.

About SimMechanics Models

A SimMechanics model consists of a block diagram composed of one or more machines, each of which is a set of connected blocks representing a single physical machine. For example, the following model contains two machines.

Comparison to Other Simulink Models

A SimMechanics model differs significantly from other Simulink models in how it represents a machine. An ordinary Simulink model represents the mathematics of a machine's motion, i.e., the algebraic and differential
equations that predict the machine's future state from its present state. The mathematical model enables Simulink to simulate the machine. By contrast, a SimMechanics model represents the physical structure of a machine, the geometric and kinematic relationships of its component bodies. SimMechanics converts this structural representation to an internal, equivalent mathematical model. This saves you the time and effort of developing the mathematical model yourself.

Creating a SimMechanics Model

You create a SimMechanics model in much the same way you create any other Simulink model. First, you open a Simulink model window. Then you drag instances of SimMechanics and other Simulink blocks from the Simulink block libraries into the window and draw lines to interconnect the blocks (see "Connecting SimMechanics Blocks" on page 4-4).

The SimMechanics block library provides the following blocks specifically for modeling machines:

- Machine Environment blocks set the mechanical environment for a machine. Exactly one Ground block in each machine must be connected to a Machine Environment block. See the "Running Mechanical Models" chapter.
- Body blocks represent a machine's components and the machine's immobile surroundings (ground). See "Modeling Bodies and Grounds" on page 4-8.
- Joint blocks represent the degrees of freedom of one body relative to another body or to a point on ground. See "Modeling Joints" on page 4-17.
- Constraint and Driver blocks restrict motions of or impose motions on bodies relative to one another. See "Modeling Constraints and Drivers" on page 4-35.
- Actuator blocks specify forces, motions, variable masses and inertias, or initial conditions applied to bodies, joints, and drivers. See "Modeling Actuators" on page 4-42.
- Force element blocks model interbody forces. See "Modeling Force Elements" on page 4-58.
- Sensor blocks measure the forces on and motions of bodies, joints, and drivers. See "Modeling Sensors" on page 4-63.

You can use blocks from other Simulink libraries in SimMechanics models. For example, you can connect the output of SimMechanics Sensor blocks to Scope
blocks from the Simulink Sinks library to display the forces and motions of your model's bodies and joints. Similarly, you can connect blocks from the Simulink Sources library to SimMechanics Driver blocks to specify relative motions of your machine's bodies.

Connecting SimMechanics Blocks

In general, you connect SimMechanics blocks in the same way you connect other Simulink blocks: by drawing lines between them. Significant differences exist, however, between connecting standard Simulink blocks and connecting SimMechanics blocks. The following sections discuss these differences.

Connection Lines

The lines that you draw between standard Simulink blocks, called signal lines, represent inputs to and outputs from the mathematical functions represented by the blocks. By contrast, the lines that you draw between SimMechanics blocks, called connection lines, represent physical connections and spatial relationships among the bodies represented by the blocks.

You can draw connection lines only between specialized connection ports available only on SimMechanics blocks (see next section) and you cannot branch existing connection lines. Connection lines appear as solid black when connected and as dashed red lines when either end is unconnected.

Connector Ports

Standard Simulink blocks have input and output ports. By contrast, most SimMechanics blocks contain only specialized connector ports that permit you to draw connection lines among SimMechanics blocks. SimMechanics connector ports are of two types: Body CS ports and general-purpose ports.

Body CS ports appear on Body and Ground blocks and define connection points on a body or ground. Each is associated with a local coordinate system whose origin specifies the location of the associated connection point on the body.

General-purpose connector ports appear on Joint, Constraint, Driver, Sensor, and Actuator blocks. They permit you to connect Joints to Bodies and connect Sensors and Actuators to Joints, Constraints, and Drivers. General-purpose connector ports appear as circles on the block icon. The circle is unfilled if the port is unconnected and filled if the port is connected.

Interfacing SimMechanics Blocks to Simulink Blocks

SimMechanics Actuator blocks (see "Modeling Actuators" on page 4-42) contain standard Simulink input ports. Thus, you can connect standard Simulink blocks to a SimMechanics model via Actuator blocks. Similarly, SimMechanics Sensor blocks contain output ports (see "Modeling Sensors" on page 4-63). Thus, you can connect a SimMechanics model to Simulink blocks via Sensor blocks.

Setting SimMechanics Block Properties at the Command Line

You cannot use the Simulink set_param and get_param commands to set or get SimMechanics block parameters. Instead, you must set block parameters via
the block dialog boxes. You can open the dialogs by double-clicking the block, or by right-clicking the block and selecting Open block.

Creating SimMechanics Subsystems

Large, complex block diagram models are often hard to analyze. Enclosing functionally related groups of blocks in subsystems alleviates this difficulty and facilitates reuse of block groups in different models.

You can create subsystems containing SimMechanics blocks that you can connect to other SimMechanics blocks. You do this in two ways:

- Automatically
- Manually

The Using Simulink documentation explains more about creating subsystems.

Creating a Subsystem Automatically

To create a SimMechanics subsystem automatically,
1 Create the subsystem block diagram in your model window, leaving unconnected ports for external connections.

2 Group-select the subsystem block diagram.
3 Select the Make subsystem command from the Simulink window.
The command replaces the block diagram with a Subsystem block containing the selected block diagram. The command also creates and connects SimMechanics Connection Port blocks for the ports that you left unconnected in the block diagram. The Connection Port blocks in turn create connector port icons on the subsystem icon, enabling you to connect external SimMechanics blocks to the new subsystem.

Subsystem connector port

Creating a Subsystem Manually

Sometimes you need to make a subsystem configured differently from an automatically created one. To create a SimMechanics subsystem manually,

1 Drag a Subsystem block into your model window.
2 Open the Subsystem block.
3 Create the subsystem block diagram in the subsystem window.
4 Drag a Connection Port block from the SimMechanics Utilities library into the subsystem window for each port that you want to be available externally.

5 Connect the external connector ports to the Connection Port blocks.

Creating Custom SimMechanics Blocks with Masks

You can create your own SimMechanics blocks from subsystems, for example, a spring-loaded Joint block or a sphere Body block. To do this, create a block diagram that implements the functionality of your custom block, enclose the diagram as a subsystem, and add a mask (i.e., user interface) to the subsystem. To facilitate sharing your custom blocks across models or with other users, create a Simulink block library and add these masked subsystem blocks to the library. The Using Simulink documentation explains how to create custom blocks with masks.

Modeling Bodies and Grounds

The basic components of any mechanism are its constituent rigid bodies. In SimMechanics, the term body refers to any point or spatially extended object that has mass. SimMechanics bodies, unlike physical bodies, do not have degrees of freedom. The SimMechanics Bodies library contains two blocks for representing bodies in a Simulink model:

- Ground

Models a point on an ideal body of infinite mass and extent that serves as a fixed reference point for machines (see "Modeling Grounds" following).

- Body

Models rigid bodies of finite mass and extent, including their attached body coordinate systems (see "Modeling Rigid Bodies" on page 4-10 and "Working with Body Coordinate Systems" on page 4-12).

The "Representing Motion" chapter explains, with detailed examples, more about configuring bodies and their coordinate systems in space.

Machine Environment Required for Each Machine

One Ground block in each machine of your model plays a second role, connection to that machine's Machine Environment block, which sets its mechanical environment. See the "Running Mechanical Models" chapter.

Modeling Grounds

In SimMechanics, ground refers to a body of infinite mass and size that acts both as a reference frame at rest for a machine as a whole and as a fixed base for attaching machine components, e.g., the factory floor on which a robot stands. SimMechanics Ground blocks enable you to represent points on ground in your machine. This in turn enables you to specify the degrees of freedom that your system has relative to its surroundings. You do this by connecting Joint blocks representing the degrees of freedom between the Body blocks representing parts of your machine and the Ground blocks representing ground points.

Each Ground block has a single connector port to which you can connect a Joint block that can in turn be connected to a single Body block. Each Ground block therefore allows you to represent the degrees of freedom between a single part of your machine and its surroundings. If you want to specify the motion of other
parts of your machine relative to the surroundings, you must create additional Ground blocks.

Note To be valid, each machine in a SimMechanics model must contain at least one Ground block connected to a Body block via a Joint block.

Exactly one Ground block in each machine in your model must be connected to a Machine Environment block.

The World Coordinate System

SimMechanics uses an internal master coordinate system and reference frame called World. All grounds are at rest in World. The connector port of each Ground block defines a grounded coordinate system called GND. The GND coordinate system's axes are parallel to World. By default the origin of the grounded coordinate system coincides with the origin of the World coordinate system. The Location field of a Ground block's dialog box allows you to move the origin of GND to some other point in the World coordinate system, as in the example "Building a Simple Pendulum" on page 2-11.

The GND coordinate system allows you to specify the positions and motions of parts of your machine relative to fixed points in the machine's surroundings.

Modeling Rigid Bodies

The SimMechanics Body block enables you to model rigid bodies of finite mass and extent. A body is rigid if its internal parts cannot move relative to one another.

About Body Blocks

A Body block allows you to specify the following attributes of a rigid body.
Mass Properties. These include the body's mass, which determines its response to translational forces, and its inertia tensor, which determines its response to rotational torques.

Body Coordinate Systems. By default a Body block defines three local coordinate systems, one associated with a body's center of gravity, labeled CG, and two others, labeled CS1 and CS2, respectively, associated with two other points on the body that you can specify. You can create additional body coordinate systems or delete them as necessary.

A Body block's dialog box allows you to specify a Body CS's origin (see "Setting a Body CS's Position" on page 4-13) and orientation (see "Setting a Body CS's Orientation" on page 4-15). The origin and orientation of a body's CG CS specify the body's initial location and orientation. The origins of the other body coordinate systems specify the initial locations of other points on the body.
SimMechanics allows flexibility in specifying the origins and orientations of a body's coordinate systems. You can specify the origin and orientation of a body CS relative to

- The World CS
- Any other CS on the same body
- The Adjoining CS, the CS on the neighboring body or ground directly connected by a Joint, Constraint, or Driver to the selected Body CS you are configuring
This simplifies creation and maintenance of models. The only limitation is that you must specify the origin and location of at least one of a machine's body coordinate systems relative to the World CS.

Connector Ports. Any Body CS can display a Body CS Port. A Body CS Port allows you to attach Joints, Actuators, and Sensors to a Body. By default, a

Body's CS1 and CS2 coordinate systems each display a Body CS port. You can display a port for any other Body coordinate system as well, including a Body's CG CS.

Creating a Body Block

To create a Body block,
1 Drag a Body block icon from the SimMechanics Bodies library and drop it into your model window.

2 Open the Body block's dialog box.
3 Enter the mass of the body you are modeling in the Mass field.
4 Select the units of mass from the adjacent units list.
5 Enter a 3-by-3 matrix representing the body's inertia tensor relative to its center of gravity coordinate system (CG CS) origin and axes in the Inertia field (see "Determining Inertia Tensors for Common Shapes" on page 4-11).

6 Enter the initial positions of the body's CG and coordinate systems in the Position pane.

7 Enter the initial orientation of the body's CG and coordinate systems in the Orientation pane.

8 Click OK or Apply.

Determining Inertia Tensors for Common Shapes

The following table enables you to determine the inertia tensors for some common shapes. For each shape of mass m, the table lists the shape's principal
moments of inertia, I_{1}, I_{2}, and I_{3}, along the x-, y-, and z-axes of the shape's CG coordinate system.

Shape	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{3}}$
Thin rod of length L aligned along z	$\frac{1}{12} m L^{2}$	$\frac{1}{12} m L^{2}$	0
Sphere of radius R	$\frac{2}{5} m R^{2}$	$\frac{2}{5} m R^{2}$	$\frac{2}{5} m R^{2}$
Cylinder of radius R and height h aligned along z	$\frac{1}{4} m\left(R^{2}+\frac{1}{3} h^{2}\right)$	$\frac{1}{4} m\left(R^{2}+\frac{1}{3} h^{2}\right)$	$\frac{1}{2} m R^{2}$
Rectangular parallelopiped of sides a, b, and c aligned along x, y, z, respectively	$\frac{1}{12} m\left(b^{2}+c^{2}\right)$	$\frac{1}{12} m\left(a^{2}+c^{2}\right)$	$\frac{1}{12} m\left(a^{2}+b^{2}\right)$
Cone of base radius R and height h along z	$\frac{1}{4} m\left(\frac{3}{5} R^{2}+h^{2}\right)$	$\frac{1}{4} m\left(\frac{3}{5} R^{2}+h^{2}\right)$	$\frac{3}{10} m R^{2}$
Ellipsoid of semiaxes a, b, and c aligned along x, y, z, respectively	$\frac{1}{5} m\left(b^{2}+c^{2}\right)$	$\frac{1}{5} m\left(a^{2}+c^{2}\right)$	$\frac{1}{5} m\left(a^{2}+b^{2}\right)$

The corresponding inertia tensor for the shape is the following 3-by-3 matrix:

$$
\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right]
$$

Working with Body Coordinate Systems

Every body in SimMechanics has body coordinate systems (CSs) attached to it. The location of a body CS is the origin of that CS. The CS's rectangular $x-y-z$ coordinate axes are rotated at some orientation. You set up body CS origins and orientations before running your model. But once the bodies start to move, the origins and orientations of a body's CSs remain fixed in the body. The elements
of a body's inertia tensor also remain fixed in the body. Consult the "Representing Motion" chapter for more about orienting bodies and body CSs.

The sections "Managing Body Coordinate Systems" on page 4-16 and "Creating Body CS Ports" on page 4-16 explain how to create custom body coordinate systems and Body CS ports or delete existing ports.

Setting a Body CS's Position

The Position pane of a Body block's dialog box allows you to specify the position of any of a body's local coordinate systems.

The Translated from origin of and Components in axes of lists in the pane together specify which other of your machine's coordinate systems you use as reference points and orientations to set up the coordinate systems of the body you are configuring.
To specify the position of a Body CS,
1 Open the Body block's dialog box.
The dialog box's Position pane lists the body's local coordinate systems in a table.

Each row specifies the position of the coordinate system specified in the Name column.

2 Select the units in which you want to specify the origin of the Body CS from the CS's Units list.

3 Specify the reference coordinate systems for the Body CS, i.e., the coordinate systems relative to which you want to measure the Body CS origin and the orientation of the Body CS's coordinate axes. The choices are World, the adjoining CS, and other Body CSs on the same Body.

You must directly or indirectly define all Body CSs by reference to a Ground or to World. Indirect reference means that you specify a Body CS relative to another CS and so on, in a chain of references that ultimately ends in a Ground or World.

You do this by selecting the origin and orientation of the specification CS from the Body CS's Translated from origin of and Components in axes of lists, respectively. For example, suppose that you want to specify the position of CS2 relative to another coordinate system, whose origin is at the origin of CS1 but whose axes run parallel to those of the CG CS. Then you would select CS1 from the Translated from origin of list of CS2 and CG from the Components in axes of list of CS2.

4 Enter a vector specifying the location of the Body CS in the Origin position vector [x y z] field of the CS.

The components of the vector must be in the units that you selected and relative to the coordinate system that you selected. For example, suppose that you had selected m as the unit for specifying CS2's origin and CS1 and WORLD as the CSs specifying the origin and orientation for CS2. Now suppose that you want to specify the location of CS2 as one meter to the right of CS1 along the World x-axis. Then you would enter [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ as CS2's position vector.

5 Click Apply to accept the position setting or OK to accept the setting and dismiss the dialog box.

Setting a Body CS's Orientation

The Orientation pane of a Body block's dialog box allows you to specify the orientation of any of a body's local coordinate systems.

To specify the orientation of a Body CS,
1 Open the Body block's dialog box.
2 Select the dialog box's Orientation pane.

3 Select the units (degrees or radians) in which you want to specify the orientation of the CS from the CS's Units list.

4 Select the coordinate system relative to which you want to specify the orientation of the Body CS from the Body CS's Relative to coordinate system list. The choices are World, the adjoining CS, and other Body CSs on the same Body.

5 Select the convention you want to use to specify the orientation of the Body CS from the CS's Specified using convention list.

6 Enter a vector that specifies the orientation of the Body CS relative to the CS you choose for that purpose, according to the selected specification convention.

7 Click Apply to accept the orientation setting or OK to accept the setting and dismiss the dialog box.

Managing Body Coordinate Systems

You will often need to modify the default body coordinate systems of a Body block. You might want to connect a Body to more than two Joints, in which case you need not only more Body CSs, but their Body CS ports as well. Connecting Actuators and Sensors to Bodies requires a Body CS and Body CS port for each connection.

The Body coordinate systems panel of a Body block's dialog box contains a row of buttons that allow you to add, delete, duplicate, and reorder a Body's local coordinate systems.

To use these buttons, select a Body CS in the CS table and select

- Duplicate to duplicate the CS
- Delete to remove the selected CS from the table
- Up to move the CS's entry one row up in the CS table
- Down to move the CS's entry one row down in the CS table

Select Add to add a new CS.

Creating Body CS Ports

To add or delete a port from a Body block's icon, open the block's dialog box and select or unselect the CS's Show port check box in the dialog box's Body CS table. Click OK or Apply to confirm the change.

Modeling Joints

In SimMechanics, a joint represents the degrees of freedom (DoF) that one body (the follower) has relative to another body (the base). The base body can be a finite rigid body or a ground. Unlike a physical joint, a SimMechanics joint has no mass, although some joints have spatial extension (see "Modeling with Massless Connectors" on page 4-26.

A SimMechanics joint does not necessarily imply a physical connection between two bodies. For example, a SimMechanics Six-DoF joint allows the follower, e.g., an airplane, unconstrained movement relative to the base, e.g., ground, and does not require that the follower ever come into contact with the base.

SimMechanics joints only add degrees of freedom to a machine, because the Body blocks carry no degrees of freedom. Contrast this with physical joints, which both add DoFs (with axes of motion) and remove DoFs (by connecting bodies). See "Counting Degrees of Freedom" on page 4-71.

SimMechanics provides an extensive Joints library with blocks for modeling various types of joints. This section explains how to use these blocks:

- "About Joints"
- "Creating a Joint" on page 4-24
- "Modeling with Massless Connectors" on page 4-26
- "Modeling with Disassembled Joints" on page 4-30
- "Cutting Closed Loops" on page 4-33

About Joints

Modeling with Joint blocks requires an understanding of the following key concepts:

- Joint primitives
- Joint types
- Joint axes
- Joint directionality
- Assembly restrictions

Joint Primitives

Each Joint block conceptually represents one or more joint primitives that together specify the degrees of freedom that a follower body has relative to the base body. The following table summarizes the joint primitives found singly or multiply in Joint blocks.

Primitive Type	Symbol	Degrees of Freedom
Prismatic	P	One degree of translational freedom along a prismatic axis
Revolute	R	One degree of rotational freedom about a revolute axis
Spherical	S	Three degrees of rotational freedom about a pivot point
Weld	W	Zero degrees of freedom

Joint Types

The blocks in the SimMechanics Joints library fall into the following categories:

- Primitive joints

Each of these blocks contains a single joint primitive. For example, the Revolute block contains a revolute joint primitive.

- Composite joints

These blocks contain combinations of joint primitives, enabling you to specify multiple rotational and translational degrees of freedom of one body relative to another. Some model idealized real joints, for example, the Gimbal and Bearing joints.

Others specify abstract combinations of degrees of freedom. For example, the Six-DoF block specifies unlimited motion of the follower relative to the base.
The Custom Joint allows you to create joints with any desired combination of rotational and translational degrees of freedom, in any order. The prefabricated composite Joints of the Joints library have the type and order of their primitives fixed. See "Axis Order" under "Joint Axes" on page 4-20.

- Massless connectors

These blocks represent extended joints with spatially separated joint primitive axes, for example, a Revolute-Revolute Massless Connector.

- Disassembled joints

These blocks represent joints that SimMechanics assembles at simulation time, for example, a Disassembled Prismatic.

See "Assembly Restrictions" on page 4-23 and "Modeling with Disassembled Joints" on page 4-30.

Joint Axes

Joint blocks define one or more axes of translation or rotation along which or around which a follower block can move in relation to the base block. The axes of a Joint block are the axes defined by its component primitives:

- A prismatic primitive defines an axis of translation.
- A revolute primitive defines an axis of revolution.
- A spherical primitive defines a pivot point for axis-angle rotation.

For example, a Planar Joint block combines two prismatic axes and hence defines two axes of translation.

Axis Direction. By default the axes of prismatic and revolute primitives point in the same direction as the z-axis of the World coordinate system. A Joint block's dialog box allows you to point its prismatic and revolute axes in any other direction (see "Directing Joint Axes" on page 4-24).

Axis Order. SimMechanics executes the motion of composite joints one joint primitive at a time. A joint that defines more than one axis of motion also defines the order in which the follower body moves along each axis or about a pivot. The order in which the axes and/or pivot appear in the Joint block's dialog box is the order in which the follower body moves.

Different primitive execution orders are physically equivalent, unless the joint includes one spherical or three revolute primitives. Pure translations and pure two-dimensional rotations are independent of primitive ordering.

Joint Directionality

Directionality is a property of a joint that determines the dependence of the joint on the sign of forces or torques applied to it. A joint's directionality also determines the sign of signals output by sensors attached to the joint. SimMechanics assigns a directionality to every joint in your model. You must be able to determine the directionality of a joint in order to actuate it correctly and to interpret the output of sensors attached to it.

When assigning directionality to a joint, SimMechanics regards the joint's follower as moving relative to the joint's base. SimMechanics then assigns a directionality to the joint, taking into account the type of joint and the direction of the joint's axis, as follows.

Directionality of a Prismatic Joint. If the joint is prismatic, a positive force applied to the joint moves the follower in the positive direction along the axis of translation. A sensor attached to the joint outputs a positive signal if the follower moves in a positive direction along the joint's axis of translation relative to the base.

Directionality of a Revolute Joint. If the joint is revolute, a positive torque applied to the joint rotates the follower by a positive angle around the joint's axis of rotation, as determined by the right-hand rule. A sensor attached to the revolute joint outputs a positive signal if the follower rotates by a positive angle around the joint's axis of revolution, as determined by the right-hand rule.

Directionality of a Spherical Joint. Spherical joint directionality means the positive sense of rotation of the three rotational DoFs. Pick a rotation axis, rotating using the right-hand rule from the base Body CS axes. Then rotate the follower Body about that axis in the right-handed sense.

Directionality of Composite Joints. SimMechanics assigns a directionality separately to each joint primitive, based on the primitive's type and the direction of its axis of translation or rotation. In each case, SimMechanics
regards the follower body of the composite joint as moving relative to the base body along or around the joint primitive's axis.

The order of primitives in the composite Joint's dialog determines the spatial construction of the joint. The first listed primitive is attached to the base, the second to the first, and so on, down to the follower, which is attached to the last primitive. Moving the first listed primitive moves the subsequent primitives in the list, as well as the follower, relative to the base. Moving any primitive moves the primitives below it in the list (but not those above it), as well as the follower. Moving the last listed primitive moves only the follower.

Changing the Directionality of a Joint. You can change the directionality of a joint by rewiring the Joint block to reverse the roles of the base and follower bodies or by reversing the sign (direction) of the joint axis.

Assembly Restrictions

Many joints impose one or more restrictions, called assembly restrictions, on the positions of the bodies that they join. The conjoined bodies must satisfy these restrictions at the beginning of simulation and thereafter within assembly tolerances that you can specify (see "Setting Assembly Tolerances" on page 5-5). For example, the attachment points of revolute and spherical joints must coincide within assembly tolerances; the attachment points of a Prismatic joint must be collinear with the prismatic axis within assembly tolerances; the attachment points of a Planar joint must be coplanar, etc. Composite joints, e.g., the Six-DoF joint, impose assembly restrictions equal to the most restrictive of its joint primitives. See the block reference for each Joint for information on the assembly restrictions, if any, that it imposes. Positioning bodies so that they satisfy a joint's assembly restrictions is called assembling the joint.

All joints except joints in the SimMechanics Disassembled Joints sublibrary require manual assembly. Manual assembly entails your setting the initial positions of conjoined bodies to valid locations (see "Assembling Joints" on page 4-25). SimMechanics assembles disassembled joints during the model initialization phase of simulation. It assumes that you have already assembled all other joints before the start of simulation. Hence joints that require manual assembly are called assembled joints. During model initialization and at each time step, SimMechanics also checks to ensure that your model's bodies satisfy all assembly restrictions. If any of your model bodies fails to satisfy assembly restrictions, Simulink halts the simulation and displays an error message.

Creating a Joint

A joint must connect exactly two bodies. To create a joint between two bodies:
1 Select the Joint from the SimMechanics Joints library that best represents the degrees of freedom of the follower body relative to the base body.

2 Connect the base connector port of the Joint block (labeled B) to the point on the base block that serves as the point of reference for specifying the degrees of freedom of the follower block.

3 Connect the follower connector port of the Joint block (labeled F) to the point on the follower block that serves as the point of reference for specifying the degrees of freedom of the base block.

4 Specify the directions of the joint's axes (see "Directing Joint Axes" on page 4-24).

5 If you plan to attach Sensors or Actuators to the Joint, create an additional port for each Sensor and Actuator (see "Creating Actuator and Sensor Ports on a Joint" on page 4-25).

6 If the joint is an assembled joint, assemble the bodies joined by the joint (see "Assembling Joints" on page 4-25).

Directing Joint Axes

By default the prismatic and revolute axes of a joint point in the same direction as the z-axis of the World coordinate system. To change the direction of the axis of a joint primitive:

1 Open the joint's dialog box and select a reference coordinate system for specifying the axis direction from the coordinate system list associated with the axis primitive.

The options are the World coordinate system or the local coordinate systems of the base or follower attachment point. Choose the coordinate system that is most convenient.

2 Enter in the primitive's axis direction field a vector that points in the desired direction of the axis in the selected coordinate system.

Creating Actuator and Sensor Ports on a Joint

To create additional connector ports on a Joint for Actuators and Sensors, open the Joint's dialog box and set the Number of sensor/actuator ports to the number of Actuators and Sensors you plan to attach to the Joint.

Apply the setting by clicking OK or Apply.

Assembling Joints

You must manually assemble all assembled joints in your model. Assembling a joint requires setting the initial positions of its base and follower attachment points such that they satisfy the assembly restrictions imposed by the joint (see "Assembly Restrictions" on page 4-23). Consider, for example, the model discussed in "A Four Bar Mechanism" on page 2-36. This model comprises three bars connected by revolute joints to each other and to two ground points. The model collocates the CS origins of the Body CS ports connected to each Joint, thereby satisfying the assembly restrictions imposed by the revolute joints.

Assembled Revolute Joint in the Four Bar Mechanism

Modeling with Massless Connectors

Massless connectors simplify the modeling of machines that use a relatively light body to connect two relatively massive bodies. For example, you could use a Body block to model such a connector. But the resulting equations of motion might be ill-conditioned, because that connecting body's mass is small, and the simulation can be slow or error prone. A massless connector also avoids global inconsistencies that can arise if you use a Constraint block to model the connector.

A massless connector consists of a pair of joints located a fixed distance apart. Think of a massless connector as a massless rod with a joint primitive affixed at each end.

The initial orientation and length of the massless connector are defined by a vector drawn from the base attachment point to the follower attachment point. During simulation, the orientation of the massless connector can change but not its length. In other words, the massless connector preserves the initial separation of the base and follower bodies during machine motion.

Note You cannot actuate or sense a massless connector.

The SimMechanics Joints/Massless Connectors sublibrary contains three Massless Connectors:

- One with two revolute primitives (Revolute-Revolute)
- One with a revolute primitive and a spherical primitive (Revolute-Spherical)
- One with two spherical primitives (Spherical-Spherical)

You can set the direction of the axes of the revolute primitives.

Creating a Massless Connector

To create a massless connector between two bodies:
1 Drag an instance of a Massless Connector block from the Massless Connectors sublibrary into your model and connect it to the base and follower blocks.

If necessary, point the axes of the connector's revolute joints in the direction required by the dynamics of the machine you are modeling.

2 Assemble the connector by setting the initial positions of the base and follower body attachment points to the initial positions required by your machine's structure.

During simulation, the massless connector maintains the initial separation between the bodies though not necessarily the initial relative orientation.

Massless Connector Example: Triple Pendulum

Consider a triple pendulum comprising massive upper and lower bodies and a middle body of negligible mass. The following model uses a Revolute-Revolute massless connector to model such a pendulum.

In this model, the joint axes of the Revolute-Revolute connector have their default orientation along the World z-axis. As a result, the lower arm (Body1) rotates parallel to the World's $x-y$ plane.

Massless Connector Example: Four Bar Mechanism

The following model replaces one of the bars (Bar2) in the mech_four_bar model from the Demos library with a Revolute-Revolute massless connector.

This model changes the Body CS origins of Bar3 to the following values.

Name	Origin position vector	Translated from origin of
CG	$\left[\begin{array}{llll}-0.027 & 0.048 & 0\end{array}\right]$	CS1
CS1	$\left[\begin{array}{lll}0.054 & 0.096 & 0\end{array}\right]$	CS2
CS2	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	ADJOINING (Ground_2)

This creates a separation between Bar3 and Bar1 equal to the length of Bar2 in the original model.

Try simulating both the original and the modified model. Notice that the massless connector version moves differently, because you eliminated the mass of Bar2 from the model. Notice also that the massless bar does not appear in the animation of the massless connector version of the model.

Modeling with Disassembled Joints

The SimMechanics Joints/Disassembled Joints sublibrary contains a set of joints that SimMechanics automatically assembles at the start of simulation; that is, SimMechanics positions the joints such that they satisfy the assembly restrictions imposed by the type of joint, e.g., prismatic or revolute. Using these joints eliminates the need for you to assemble the joints yourself.

Disassembled joints differ from assembled joints in significant ways. An assembled joint primitive has only one axis of translation or revolution or one spherical pivot point. A disassembled prismatic or revolute primitive has two axes of translation or rotation, one for the base and one for the follower body. A disassembled spherical primitive similarly has two pivot points.

Note Disassembled joints can appear only in closed loops. Each closed loop can contain only one disassembled joint.

The dialog box for a disassembled joint allows you to specify the direction of each axis.

During model assembly, SimMechanics determines a common axis of revolution or translation that satisfies model assembly restrictions, and aligns the base and follower axes along the common axis.

Controlling Automatic Assembly

During model assembly, SimMechanics might move bodies connected by assembled joints from their initial positions in order to assemble the disassembled joints. SimMechanics' solution to the assembly problem cannot be predicted beforehand, except in simple cases. To prevent SimMechanics from moving bodies during model assembly, use Joint Initial Condition Actuator (JICA) blocks to specify the initial positions of bodies whose positions you want to remain fixed during the assembly process. This forces SimMechanics to find assembly solutions that satisfy the initial conditions specified by the JICA blocks.

Disassembled Joint Example: Four Bar Mechanism

This example creates and runs a model of a disassembled four bar machine.

Refer to the tutorial, "A Four Bar Mechanism" on page 2-36, and the mech_four_bar demo:

1 Disconnect the Joint Sensor1 block from the Revolute3 block.
2 Replace Revolute3 with a Disassembled Revolute block from the Joints/Disassembled Joints sublibrary.

3 Open the Disassembled Revolute dialog box and, under Axis of rotation for both Base and Follower axes, enter [00 1]. Close the dialog.

4 Open the Bar2 dialog box and dislocate the joint by displacing Bar2's CS2 origin from Bar 3's CS1 origin.

Do this by entering a nonzero vector under Origin position vector [x y z] for CS2, then changing the Translated from origin of pulldown entry to ADJOINING. CS1 on Bar3 is the Adjoining CS of CS2 of Bar2. Close the dialog.

5 To avoid circular CS referencing, you must check the Bar3 dialog entry for CS1 on Bar3. Be sure that CS1 on Bar3 does not reference CS2 on Bar2. Reference it instead to CS2 on Bar3, which adjoins Ground_2.

6 Rerun the model.
Note that the motion is different from the manually assembled case.

Cutting Closed Loops

Simulink cannot solve models whose block diagrams contain closed loops. To simulate a model containing closed loops, SimMechanics internally converts a closed-loop model to an open-topology model, by cutting each of the model's closed loops once, at a Joint, Constraint, or Driver block.

You can specify the Joint to cut if the loop does not contain a disassembled joint. To do this, open the Joint's dialog box and select the Mark as the preferred cut joint option check box on the Advanced pane in that Joint's dialog Parameters area. If you do not specify a preference, Simulink cuts the loop at a Disassembled Joint block if the loop contains one; otherwise, at a Constraint or Driver block if the loop contains a Constraint block; otherwise, at the Joint that has the fewest degrees of freedom.

Note SimMechanics cuts a loop at a disassembled joint regardless of your preferred cut.

To display automatically cut joints, select the Mark automatically cut joints check box in the Diagnostics area of the SimMechanics node of your model's Configuration Parameters dialog (see "Controlling SimMechanics Simulation Diagnostics" on page 5-11).

Refer to "Modeling with Disassembled Joints" on page 4-30 for more on disassembled joints. Consult "Checking Machine Topology" on page 4-68 to see how SimMechanics analyzes closed loops in the model diagram.

Modeling Constraints and Drivers

The SimMechanics Constraints \& Driver library provides a set of blocks to model constraints on the relative motions of two bodies. You model the constraint by connecting the appropriate Constraint or Driver block between the two bodies. As with joints, the blocks each have a base and follower connector port, with the body connected to the follower port viewed as moving relative to the body connected to the base port. For example, the following model constrains Body2 to move along a track that is parallel to the track of Body1.

The blocks enable you to model time-independent constraints or time-dependent drivers.

- Constraint and unactuated Driver blocks model scleronomic (time-independent) constraints.
- Actuated Driver blocks (see "Actuating a Driver" on page 4-53) model rheonomic (time-dependent) constraints. They move Bodies relative

Holonomic constraint functions depend only on body positions, not velocities:

$$
f\left(\boldsymbol{x}_{B}, \boldsymbol{x}_{\boldsymbol{F}} ; t\right)=0
$$

Constraints of the form

$$
g\left(\boldsymbol{x}_{B}, \dot{\boldsymbol{x}}_{B}, \boldsymbol{x}_{F}, \dot{\boldsymbol{x}}_{F} ; t\right)=0
$$

can sometimes be integrated into a form dependent only on positions; but if not, they are nonholonomic.

What Constraints and Drivers Do

Constraints and drivers can only remove degrees of freedom from a machine. Constraints and unactuated Drivers prevent the machine from moving in certain ways. Unactuated Drivers hold the constrained degrees of freedom
between the connected pair of bodies in their initial state. Actuated Drivers externally impose a relative motion between pairs of bodies, starting with the bodies' initial state, and those pairs of bodies are no longer free to respond to externally applied forces or torques. See "Counting Degrees of Freedom" on page 4-71.

This section discusses modeling constraints and drivers in a general way.

- "Directionality of Constraints and Drivers" on page 4-36
- "Solving Constraints" on page 4-36
- "Restrictions on Using Constraint and Driver Blocks" on page 4-37

The section ends with two examples, "Constraint Example: Gear Constraint" on page 4-37 and "Driver Example: Angle Driver" on page 4-39.

See the reference pages for information on the specific constraint that a Constraint or Driver block imposes.

Directionality of Constraints and Drivers

Like joints, constraints and drivers have directionality. The sequence of base to follower body determines the directionality of the constraint or driver. The directionality determines how the sign of Driver Actuator signals affects the motion of the follower relative to the base and the sign of signals output by constraint and driver sensors.

Solving Constraints

When simulating a model, SimMechanics uses a constraint solver to find the motion, given the model's Constraint and Driver blocks. You can specify both the constraint solver type and the constraint tolerances that SimMechanics uses to find the constraint solution. See "Implementing Constraints" on page 5-5 for more information.

Mitigating Constraint Singularities

Some constraints, whether time-independent (Constraints) or time-dependent (Drivers), can become singular when the constrained bodies take on certain relative configurations; for example, if the two body axes line up when the Bodies are connected by an Angle Driver. The simulation slows down as a relative constraint becomes singular.

If you find a constrained model running slowly, consider selecting the Use robust singularity handling option in the Constraints pane of your machine's Machine Environment block dialog. See "Handling Motion Singularities" on page 5-9 .

Restrictions on Using Constraint and Driver Blocks

The following restrictions apply to the use of Constraint and Driver blocks in a model:

- Constraint and Driver blocks can appear only in closed loops.
- A closed loop cannot contain more than one Constraint or Driver block.
- A Constraint or Driver must connect exactly two Bodies.

Constraint Example: Gear Constraint

The mech_gears model illustrates the Gear Constraint. Open the Body and Gear Constraint blocks.

Body1 and Body2 have their CG positions 2 meters apart. CS1 and CS2 on Body1 are collocated with the Body1 CG, and similarly, CS1 and CS2 on Body2 are collocated with the Body2 CG.

The Gear Constraint between them has two pitch circles. One is centered on the CS2 at the base Body, which is Body1, and has radius 1.5 meters. The other is centered on CS1 at the follower Body, which is Body2, and has radius 0.5 meters. The distance between CS2 on Body1 and CS1 on Body2 is 2 meters. The sum of the pitch circle radii equals this distance, as it must.

Visualizing the Gear Motion

The model is set up to open the visualization feature automatically upon simulation start, with MATLAB Graphics and convex hulls, as explained in "Introducing the SimMechanics Visualization Window" on page 6-10. Start the simulation and watch the CG CS axis triads spin around. The CG triad at Body2 rotates three times faster than the CG triad at Body1, because the pitch circle centered on Body2 is three times smaller.

You can see the same behavior in the Scope. The upper plot shows the motion of Revolute2, and the lower plot the motion of Revolute1. Note that angular motion is mapped to the interval $\left(-180^{\circ},+180^{\circ}\right]$ degrees.

The Gear Constraint is inside a closed loop formed by
Ground_1-Revolute1-Body1-Gear Constraint-Body2-Revolute2Ground_2

Although Ground_1 and Ground_2 are distinct blocks, they represent different points on the same immobile ground at rest in World. So the blocks form a loop.

Driver Example: Angle Driver

The following two models illustrate the Angle Driver, both without and with a Driver Actuator.

The Angle Driver Without a Driver Actuator

The first is mech_angle_unact. Open the Body2 block.

The bodies form a double pendulum of two rods. The Body Sensor is connected to Body2 at CS3 = CS2 and measures all three components of Body2's angular velocity vector with respect to the ground.

The Angle Driver is connected between Body2 and Ground_2. Because the Angle Driver is not actuated in this model, it acts during the simulation as a time-independent constraint to hold the angle between Body2 and Ground_2 constant at its initial value.

Visualizing the Angle Driver Motion

The model is set up to open the visualization feature automatically upon simulation start, with MATLAB Graphics and convex hulls, as explained in "Introducing the SimMechanics Visualization Window" on page 6-10.

Start the simulation. The upper body swings like a pendulum, but the lower body maintains its horizontal orientation with respect to the horizontal ground. The Scope measures Body2's angular velocity with respect to ground, and this remains at zero.

The Angle Driver With a Driver Actuator

The second model is mech_angle_act. Open the Driver Actuator block.

The Driver Actuator drives the Angle Driver block. Here, the Actuator accepts a constant angular velocity signal from the Simulink blocks. The Actuator also requires the angle itself and the angular acceleration, together with the angular velocity, in a vector signal format. The Angle Driver's angle signal is added to the angle's initial value.

The Body Sensor again measures three components of Body2's angular velocity with respect to the ground. Constant1 drives the angle at 15% second. While the simulation is running, this angle changes at the constant rate. At the same time, the assembly and the constant length of the two pendulum rods must be maintained by Simulink, while both rods are subject to gravity. As the two axes line up, the mutual constraint between the bodies enforced the Driver becomes singular. The simulation slows down.

As in the Gear Constraint model, the two Ground blocks in these models represent points on the same immobile ground at rest in World, so the Angle Driver is part of a closed loop.

Modeling Actuators

The SimMechanics Sensors \& Actuators library provides a set of Actuator blocks that enable you to apply time-dependent forces and motions to bodies, joints, and drivers. You can also vary a body's mass and inertia tensor.

Note SimMechanics allows you to connect an Actuator to a Ground. But it displays an error if you attempt to simulate or update a model containing such a connection. This is because ground is immobile and cannot be actuated.

You can use Actuator blocks to perform the following tasks:

- Apply a time-varying force or torque to a body or joint. See "Actuating a Body" following and "Actuating a Joint" on page 4-47.
- Specify the position, velocity, and acceleration of a joint or driver as a function of time. See "Actuating a Joint" on page 4-47 and "Actuating a Driver" on page 4-53.
- Specify the initial position and velocity of a joint primitive. See "Specifying Initial Positions and Velocities" on page 4-53.

In general, actuators can apply any combination of forces and motions to a machine provided that

- The applied forces and motions are consistent with each other and with the machine's geometry, constraints, and assembly restrictions.
- It is possible to find a unique solution for the motion of each actuated degree of freedom (DoF).

Actuating a Body

You can use body actuators to apply forces and/or torques, but not motions, to bodies. (You can apply motions to a body indirectly, using Joint Actuators. See "Applying Motions to Bodies" on page 4-45.)

To actuate a body:
1 If there is not already an unused connector port available for the Actuator, create a Body CS port on the Body for the Actuator. See the Body block reference if you need to learn how.

2 Drag a Body Actuator block from the Sensors \& Actuators library into your model and connect its output port to a Body CS port on the Body.

3 Open the Actuator's dialog box.
4 Choose to apply a force or torque to the body:

- Select the Apply force check box if you want to apply a force to the body, and select the units of force from the adjacent list.
- Select the Apply torque check box if you want to apply a torque to the body, and select the units of torque from the adjacent list.

5 Select the coordinate system used to specify the applied torque from the Using reference coordinate system list.

The list allows you to choose either the World CS or the Body CS of the port to which you attached the Actuator.

6 Create vector signals that specify the value of the applied torque and force at each time step.

You can use any Simulink source block (for example, an Input port block or a Sine Wave block) or combination of Simulink blocks to create the Body Actuator signal. You can also use the output of a Sensor block connected to the Body as input to the Actuator, thereby creating a feedback loop. Such loops are useful for modeling springs and dampers (see "Checking Model Validity" on page 4-68.)

7 Connect the force and/or torque signal to the input port of the Actuator.
If you are applying both a force and a torque to the body, connect the force and torque signals to the inputs of a two-input Mux block. Then connect the output of the Mux block to the input of the Actuator.

Body Actuator Example: Pure Kinetic Friction

The mech_ballistic_kin_fric model in the Demos library provides an example of how to implement pure kinetic friction. This type of friction is a continuous force that depends on a body's motion relative to a medium (such as air), as well as on physical characteristics of the body. Kinetic friction, unlike "stiction," involves no "sticking" or locking of motion, and the friction is not discontinuous. While you could use the Joint Stiction Actuator, this is not necessary. This model applies air friction or drag to a projectile with a Body Actuator.

Open the Air Drag subsystem. If you double-click the block, a mask dialog box opens asking for the drag coefficient Cd. If you right-click the block and select Look under mask, the subsystem itself appears:

The Air Drag subsystem computes the air friction according to a standard air friction model. (See the Aerospace Blockset documentation for more information.) The drag always opposes the projectile's motion and is proportional to the product of the air density, the projectile's cross-sectional area, and the square of its speed.

Run the model with the default drag coefficient (zero). The XY Graph window opens to plot the parabolic path of the projectile. Now open the Air Drag dialog again and experiment with different drag coefficients C_{d}. Start with small values such as $C_{d}=0.05$. For a rigid sphere, C_{d} is two. The effect of the drag is dramatic in that case.

Applying Motions to Bodies

The Body Actuator block cannot actuate a Body with motion signals. But you can construct such body motion actuators with a combination of other blocks. See "Joint Actuator Example: Body Driver" on page 4-49.

Varying a Body's Mass and Inertia Tensor

The Variable Mass \& Inertia Actuator block gives you a way to vary a body's mass and/or inertia tensor as external functions of time. You specify these functions with incoming Simulink signals.

Caution The Variable Mass \& Inertia Actuator block does not apply any thrust forces or torques to the Body so actuated. Mass loss or gain in a particular direction results in thrust forces and torques on the body. You must apply these forces/torques to the Body separately with Body Actuator blocks.

The variable mass/inertia actuator affects a body's motion only when you apply forces/torques on the body. When a body's motion is set only by initial conditions, changing the mass or inertia tensor of a body does not affect its motion, because the variable mass/inertia actuator does not apply forces/torques to the body.

The Variable Mass \& Inertia Actuator block changes the actuated Body's mass and rotational inertia by attaching an invisible body to the actuated body at a particular Body coordinate system (CS). This invisible body has a mass and an inertia tensor that vary in time as specified by the Actuator's external Simulink signal. SimMechanics treats the actuated body and the invisible body as a single composite body with a new mass, new center of gravity (CG), and new inertia tensor compounded from the two constituent bodies. You can add multiple Variable Mass \& Inertia Actuator blocks to one Body.

Attaching Variable Mass and Inertia Bodies to a Visible Body

To vary the mass and/or inertia tensor of a Body with this Actuator:
1 From the Sensors \& Actuators library, drag a Variable Mass \& Inertia Actuator block into your model.

2 Attach the Actuator's connector port to the Body CS on the Body where you want the invisible variable mass to be. If a suitable Body CS port does not exist on the Body, open its dialog and create one.

3 Create an external Simulink signal to model the time-varying mass and/or inertia tensor for this invisible body. Connect it to the Variable Mass \& Inertia Actuator block's Simulink input port.

This Simulink signal can have one, nine, or ten components, depending on whether you are varying the mass only, the inertia tensor only, or both.

Example: Simple Rocket

The following model simulates a simple rocket. It treats the rocket as a point mass moving upward ($+y$ direction) with an exhaust pointing downward ($-y$ direction). The rocket loses mass at a constant rate.

The Rocket block is the point mass. The Thrust Velocity block represents the downward exhaust and, multiplied by the mass loss represented by the Fuel Loss block, actuates the Rocket body with a thrust force pointing upward. The Thrust block (a body actuator) applies this force at the local Body CS, which, for a point rocket, is identical to the Rocket's CG CS.

The same mass loss from the Fuel Loss block that produces the thrust force also must vary the rocket's mass directly. The Variable Mass Actuator block accomplishes this by feeding the same mass loss signal to the Rocket block.

Actuating a Joint

You individually actuate each of the prismatic and revolute primitives of an assembled joint. You can apply

- Forces or translational motions (but not both) to prismatic primitives
- Torques or rotational motions (but not both) to revolute primitives

Note You cannot actuate spherical or weld primitives, disassembled joints, or massless connectors.

To actuate a prismatic or revolute joint primitive of an assembled joint:
1 Create an Actuator port on the Joint block for the primitive (see "Creating Actuator and Sensor Ports on a Joint" on page 4-25).

2 Drag a Joint Actuator or Joint Stiction Actuator from the Sensors \& Actuators library into your model and connect its output port to the Actuator port on the Joint.

The remaining steps in this procedure apply to the creation of a standard Joint Actuator. For information on creating a stiction actuator, which applies classical Coulombic friction to a prismatic or revolute joint, see the Joint Stiction Actuator block reference page.

3 Open the Joint Actuator's dialog box.
4 Select the primitive you want to actuate from the Connected to primitive list on the dialog box.

5 Select the type of actuation you want to apply, either Generalized forces or Motion.

6 If you are actuating a prismatic primitive:

- If you selected Generalized Forces as the actuation type, select the units of force from the Apply force list.
- If you selected Motion as the actuation type, select the units for each motion to be actuated (position, velocity, acceleration).

7 If you are actuating a revolute primitive:

- If you selected Generalized Forces as the actuation type, select the units of torque from the Apply torque list.
- If you selected Motion as the actuation type, select the units for each motion to be actuated (angle, angular velocity, angular acceleration).

8 Click OK to apply your choices and dismiss the dialog box.
Each joint primitive that you motion-actuate is lost as a true degree of freedom in your machine. That is because the DoF can no longer respond freely to externally applied forces or torques. See "Counting Degrees of Freedom" on page 4-71.

9 Create a signal that specifies the applied force, torque, or motions at each time step.

You can use any Simulink source block or any combination of blocks to create the actuator signal. You can also connect the output of a Sensor block attached to the Joint to the Actuator input, thereby creating a feedback loop. You can use such loops to model springs and dampers attached to the joint.

A force or torque signal must be a scalar signal. A motion signal must be a 1-D array signal comprising three components: position, velocity, and acceleration. The directionality of the joint determines the response of the follower to the sign of the actuator signal (see "Joint Directionality" on page 4-21).

10 Connect the Actuator signal to the Actuator port on the Joint.

Note SimMechanics allows you to connect multiple Actuators to the same primitive. But it halts and displays an error message if you attempt to update or simulate a model containing such a connection.

Exception: You can apply a Joint Initial Condition Actuator and force or torque actuation (including stiction) to the same primitive. See "Specifying Initial Positions and Velocities" on page 4-53.

Joint Actuator Example: Body Driver

The mech_body_driver model illustrates the use of Joint Actuators to create a custom driver.

The Body Driver subsystem accepts an 18-component signal that feeds the coordinates, velocities, and accelerations for all six relative DoFs between Body and Body1. The subsystem uses a Bushing block that contains three translational and three rotational primitives to represent the relative DoFs:

18-Component Driving Signal:
Translate along X, Y, Z
Rotate about X, Y, Z
Needs q. qdot, qdotdot
You can modify the body driver to move only one of the bodies, thereby creating a motion actuator. To move Body1 relative to World, for example, remove the blocks Body and Weld and connect the subsystem Body Driver directly to Ground.

Joint Stiction Actuator Example: Mixed Static and Kinetic Friction

The mech_dpen_sticky model in the Demos library illustrates a driven double pendulum, with "sticky" friction or stiction applied to both revolute joints with the Joint Stiction Actuator block.

Open the unmasked Joint1 or Joint2 Stiction Model blocks (marked in yellow) to view the subsystems:

Each Stiction subsystem contains a Joint Stiction Actuator block (marked in orange) that requires static and kinetic friction coefficients via their respective blocks. For either revolute, an angular velocity threshold, specified through the block dialog, determines if a joint locks. Once locked, the joint cannot move until a combination of forces reaches a threshold specified by the Forward Stiction Limit or Reverse Stiction Limit.

Run the model with different kinetic and static friction coefficients and different velocity thresholds. View the results in the Scope blocks and through a visualization window. You can find more details on how stiction works in SimMechanics by consulting the Joint Stiction Actuator block reference page.

Actuating a Driver

Actuating a Driver allows you to specify the time dependence of the rheonomic constraint applied by the Driver.

To actuate a Driver:
1 Create an additional connector port on the Driver for the Actuator.
Create the additional port in the same way you create an additional Sensor/Actuator port on a Joint (see "Creating Actuator and Sensor Ports on a Joint" on page 4-25).

2 Drag an instance of a Driver Actuator from the Sensors \& Actuators library into your model.

3 Connect the Actuator's output port to the Actuator port on the Driver.
4 Create a signal that specifies the time dependence of the Driver constraint.
5 Connect the actuation signal to the input port of the Driver Actuator.

Specifying Initial Positions and Velocities

The Joint Initial Condition Actuator (JICA) block allows you to specify the initial positions and velocities of unactuated joints and hence the bodies attached to them. You can use JICA blocks to

- Specify nonzero initial joint velocities

The default initial velocity of a joint primitive is zero. You must use a JICA block to specify a joint's initial velocity if the initial velocity is not zero.

- Override the initial position settings of a body pair

The CG CS origin settings in the dialog boxes of Body blocks specify the bodies' initial positions. Using JICA blocks, you can override these initial body positions by resetting their relative positions in the Joints connecting them.

Using JICA Blocks

Specifying initial conditions on a joint primitive is a special kind of actuation: one that occurs only once at the beginning of simulation. That is why the JICA block resides in the Sensors \& Actuators library.

Note A JICA block, unlike other Actuators, does not have an input port. The JICA's dialog box completely specifies the Actuator input.

With a JICA block, you can specify the initial positions and velocities of any combination of prismatic and revolute primitives within a given Joint. (You cannot specify ICs for spherical and weld primitives.)

To specify the initial velocity and/or position of a joint primitive:
1 Drag a JICA block from the Sensors \& Actuators library and drop it into your model window.

2 Create an additional connector port on the Joint block containing the primitive whose initial condition you want to specify.

3 Connect the connector port on the JICA block to the new connector port on the Joint block.

Note Do not connect the JICA block to the Joint ports marked "B" or "F" (base or follower). These ports are intended for connecting to Bodies.

4 Open the JICA block's dialog box. From the primitive list for the Joint, choose the primitives you want to actuate by selecting their check boxes.

5 Enter the initial positions of the actuated primitives, relative to the Body CSs attached to the Joint, in the Position field.

From the pull-down menu on the right, select Units for the initial positions.
6 Enter the initial velocities of the actuated primitives, relative to the Body CSs attached to the Joint, in the Velocity field.

From the pull-down menu on the right, select Units for the initial velocities.
7 Click Apply or OK.

JICA Example: A Simple Pendulum

Open mech_spen from the Demos library, then open the Sensors \& Actuators library. Follow the steps from the preceding section, "Using JICA Blocks" on page 4-53, to connect one Joint Initial Condition Actuator block to the Revolute block and configure it. This Joint contains only one primitive, R1, which is the primitive listed in the JICA dialog box.

Set the initial conditions in two ways and compare the resulting simulations in the scope:

1 First set the initial Position (angle) to 60 deg, which is 60° down from the left horizontal (30° clockwise from vertically down), and set the initial Velocity to 0 deg/s.

2 Run the simulation for one second. Note in the scope that the initial angle (yellow curve) is displaced upward to 60°, while the initial velocity (purple curve) still starts at zero.

3 Now reset the initial Velocity to $30 \mathrm{deg} / \mathrm{s}$, leaving the initial Position (angle) at 60 deg .

4 Rerun the simulation for one second. Note in Scope that the initial angle is still displaced upward to 60°, but the initial velocity is also displaced upward to $30^{\circ} / \mathrm{sec}$.

The joint directionality is assigned in mech_spen so that the positive rotation axis is the $+z$-axis. Looking from the front, positive rotation swings down and right, counterclockwise.

Modeling Force Elements

Internal forces are forces the machine applies to itself as a result of its own motion. Unlike actuation forces, you do not apply these forces from outside the machine with Simulink signals. The body motions instead generate the forces and torques directly.

The Force Elements library provides ready-made blocks to represent certain kinds of internal forces and torques acting between bodies.

- "Inserting a Linear Force Between Bodies"
- "Inserting a Linear Force or Torque Through a Joint" on page 4-60

You can also create your own customized sensor-actuator feedback loops to model springs, dampers, and more complex internal forces.

- "Customizing Force Elements with Sensor-Actuator Feedback" on page 4-61

Inserting a Linear Force Between Bodies

A generalized linear force between two bodies is a linear function of the two bodies' relative displacement vector \boldsymbol{r} and relative velocity \boldsymbol{v}, with constant coefficients. The Body Spring \& Damper block models a force acting between two bodies along the axis \boldsymbol{r} connecting them:

$$
F=-k\left(r-r_{0}\right)-b v_{\|}
$$

The block is connected on either side to Bodies at a Body coordinate system (CS). The displacement \boldsymbol{r} is a vector from one Body CS on one Body to the other Body CS on the other Body. Newton's third law requires that the forces that the bodies exert on one another be equal and opposite.

The common physical system this force model represents is a spring-damper combination, where the damper is a dashpot acting only along the spring axis. The damping is solely a function of the component $v_{\| \mid}$of the velocity vector projected along the displacement \boldsymbol{r}. (Thus the damping in this block cannot represent the damping due to a viscous medium, because there is no damping force perpendicular to the spring axis. See "Inserting a Linear Force or Torque Through a Joint" on page 4-60.)
You enter the constant parameters r_{0}, k, and b in the Body Spring \& Damper dialog. r_{0} is the spring's natural length, the length it has when no forces are
acting on it. The spring constant k and damping constant b should be nonnegative.

To complete a linear force model between bodies, you need to model the translational degrees of freedom (DoFs) between them, as the Force Element block itself does not represent these DoFs. You can use any Joint block containing at least one prismatic primitive to represent translational motion. The two Bodies, the Joint, and the Body Spring \& Damper must form a closed loop.

The following block diagram represents two Bodies with a damped spring between them. The Custom Joint represents the bodies' relative translational DoFs with three prismatic primitives. In this case, CS2 and CS3 on Body1 are the same, and CS2 and CS3 on Body2 are the same. Thus, the Joint is connected to the same Body CSs that define the ends of the spring-damper axis.

Inserting a Linear Force or Torque Through a Joint

Another way of inserting a linear force element between two bodies is to connect it to a joint that already connects the bodies. You have to apply the force element, like an actuator, to each primitive in the joint individually. This approach has several advantages over the Body Spring \& Damper:

- You can create a different force law, with a different spring length, spring constant, and damping constant, for each of the joint's primitives.
- The spring and damper forces acting on each primitive act independently in their respective directions, instead of depending on just the interbody distance with a single spring length, spring constant, and damping constant.
This allows you to create spring and damping forces that act independently in two or three dimensions, unlike the Body Spring \& Damper force, which acts only along a single axis. Damping forces acting on multiple primitives act as a two- and three-dimensional viscous medium, not as a dashpot.
- The joint representing the DoFs between the bodies is already present.

You use the Joint Spring \& Damper block to implement such spring-damper forces/torques together with a Joint. With it, you can apply a linear spring and damper force to each prismatic primitive and a linear torsion and damper torque to each revolute primitive in a Joint block. (You cannot apply these torques to a spherical primitive.)

Pick a Joint already connected between two Bodies. You connect the Joint Spring \& Damper block to a Joint block at a sensor/actuator port on the Joint. (The section "Actuating a Joint" on page 4-47 explains how to create such a port.) The Joint Spring \& Damper dialog then lists each primitive in the Joint.

For each prismatic primitive you want to actuate with a spring-damper force, you specify a natural spring length (offset), spring constant, and damping constant. For each revolute primitive you want to actuate with a torsion-damper torque, you specify a natural torsion angle (offset, or angle in which the primitive points absent any torques), torsion constant, and damping constant. You make these specifications in the Joint Spring \& Damper dialog.

Here are two bodies connected by a Custom Joint in turn connected to a Joint Spring \& Damper block.

Unlike the example in the preceding section, "Inserting a Linear Force Between Bodies" on page 4-58, the Custom Joint can have up to three prismatics and three revolutes, each with a separate linear force or torque acting through it. Each force or torque acts equally and oppositely on each body, following Newton's third law.

Customizing Force Elements with Sensor-Actuator Feedback

You can create your own force elements acting through Joints or on Bodies by using Sensor-Actuator feedback loops. With this technique, you can not only model linear forces, but any force that depends on body or joint positions and velocities.

This simple example illustrates the method with a linear spring force law. Hooke's law states that the force exerted by an extended spring is proportional to its displacement from its unextended position: $F=-k x$.

The following SimMechanics model represents a spring that obeys Hooke's law.

The model uses the Gain block labeled Spring Constant to multiply the displacement of the prismatic joint labeled Spring along the World's y-axis by the spring constant -0.8 . The output of the Gain block is the force exerted by the spring. The model feeds the force back into the prismatic joint via the Actuator labeled Force. The model encapsulates the spring block diagram in a subsystem to clarify the model and to allow a spring to be inserted elsewhere.

Modeling Sensors

The SimMechanics Sensors \& Actuators library provides a set of Sensor blocks that enable you to measure

- Body motions (see "Sensing Body Motions" on page 4-63)
- Joint motions and forces or torques on joints (see "Sensing Joint Motions and Forces" on page 4-65)
- Constraint reaction forces and torques (see "Sensing Constraint Reaction Forces" on page 4-65)

Note You can feed Sensor output back into Actuator blocks to model springs, dampers, and other mechanical devices that depend on force feedback. See "Actuating a Body" on page 4-42, "Actuating a Joint" on page 4-47, and "Checking Model Validity" on page 4-68.

Sensing Body Motions

To sense the position, velocity, or acceleration of a body represented by a Body block:

1 If the Body block does not have a spare local coordinate system with a Body CS port, create one (see "Managing Body Coordinate Systems" on page 4-16).

2 Drag a Body Sensor block from the Sensors \& Actuators library into your model.

3 Connect its connector port to a spare Body CS port on the Body.
4 Open the Sensor's dialog box.

5 Select the coordinate system relative to which the sensor measures its output from the With respect to coordinate system list.

6 Select the check boxes next to the motions that you want to sense (see the Body Sensor block reference page).

7 If you have chosen to sense more than one type of motion and want the Sensor to multiplex the motions into a single output signal, select the Output selected parameters as one signal check box.

8 Click OK or Apply.
9 Connect the output of the Body Sensor block to a Simulink Scope or other signal sink or to a motion feedback loop, depending on your needs.

Sensing Joint Motions and Forces

The SimMechanics Joint Sensor block enables you to measure the motions of joints. It can also measure the relative forces and torques between the bodies connected to the joint. These include the computed force or torque (the force or torque needed to reproduce the joint's motion) and the reaction force and torque on a joint primitive. (You cannot measure the computed force or torque on a spherical or weld primitive.) You must connect a separate Joint Sensor block to a Joint block for each joint primitive that you want to sense.

To sense the motions, forces, and torques of a joint primitive contained by a Joint block:

1 If the Joint block does not have a spare Sensor port, create one (see "Creating Actuator and Sensor Ports on a Joint" on page 4-25).

2 Drag a Joint Sensor block from the Sensors \& Actuators library into your model.

3 Connect its connector port to the spare Sensor port on the joint.
4 Use the Sensor's dialog box to configure the Sensor to measure the motions, forces, and torques that you want to measure (see the Joint Sensor block reference page).

5 Connect the output of the Joint Sensor block to a Simulink Scope or other signal sink or to a motion feedback loop, depending on your needs.

Sensing Constraint Reaction Forces

The SimMechanics Constraint \& Driver Sensor block enables you to measure the reaction forces and torques induced on the constraints modeled by SimMechanics Constraint and Driver blocks.

To sense the reaction force and/or torque induced by a constraint or driver,
1 If the Constraint or Driver does not have a spare Sensor port, create one.
2 Drag a Constraint \& Driver Sensor block from the Sensors \& Actuators library into your model.

3 Connect its connector port to a Sensor port on the Constraint or Driver block.

4 Open the Sensor block's dialog box.

5 Select the body (follower or base) on which to measure the reaction force from the Reactions measured on list.

6 Select the coordinate system relative to which the Sensor measures its output from the With respect to coordinate system list.

7 Select the Reaction torque check box if you want the Sensor to output the reaction torque on the base (or follower) body.

8 Select the Reaction force check box if you want the Sensor to output the reaction force on the base (or follower) body.

9 If you have chosen to output both reaction force and torque and want the Sensor to multiplex them into a single output signal, select the Output selected parameters as one signal check box.

10 Click OK or Apply. Connect the output of the Constraint \& Driver Sensor block to a Simulink Scope or other signal sink or to a motion feedback loop, depending on your needs.

Not all the reaction force/torque components are significant. Only those components projected into the subspace of constrained or driven degrees of freedom (DoFs) are physical. Components orthogonal to the constrained or driven degrees of freedom are not physical.

Example: Linear Driver

In this example, you drive a body along the x-axis, but only allow it a prismatic DoF tilted at an angle in the $x-y$ plane. Construct the following model.

Configure the Constraint \& Driver Sensor to measure only the reaction force, not the torque. Configure the Linear Driver to drive the Body along the World x-axis, but set up the Prismatic with a primitive axis along ($1,2,0$). The body can then move only along this axis, but is driven along the horizontal x-axis. Measure all motions and forces in World. Leave all other settings at default.

Open the Scopes and run the model. The measured reaction force lies along the x-axis, with a value of -19.62 N (Newtons). But because the constrained DoF is not parallel to the x-axis, you need to project the reaction force along the unit vector $(1,2,0) / \sqrt{5}$ defining the direction of the prismatic primitive to obtain the physical part. Add to the model the Simulink blocks that form a dot product between the reaction force signal (three components) and the prismatic unit vector (also three components). (You can define a workspace vector for this axis and use it in both the joint and the dot product.) Reconnect Scope 1 to measure this physical component of the reaction force.

The physical component of the reaction force is $-(19.62 \mathrm{~N}) *(1 / \sqrt{5})=-8.77 \mathrm{~N}$. The component of the reaction force orthogonal to $(1,2,0)$ is not physical.

Checking Model Validity

Simulink can simulate a SimMechanics model only if it is valid. A model is valid if it satisfies the following rules:

- Each machine in the model contains at least one Ground, and exactly one Ground in each machine is connected to a Machine Environment block. See "Modeling Machines" on page 4-2 and the "Modeling Mechanical Systems" chapter.
- Every machine in the model is topologically valid. See "Checking Machine Topology" on page 4-68.
- The model contains at least one degree of freedom. See "Counting Degrees of Freedom" on page 4-71.

Checking Machine Topology

To avoid simulation failures, you must ensure that the topology of your block diagram is valid. A block diagram is topologically valid if each machine that it contains is valid. A machine is valid if its spanning tree is valid. Thus to determine if your model is valid, first determine the spanning tree of each machine that it contains and then the validity of each resulting tree.

Determining a Machine's Spanning Tree

To determine the spanning tree of a machine, remove all blocks from the machine except Body and Joint blocks and open every closed loop in the resulting reduced machine. To open a closed loop, conceptually follow the loop-cutting rules in "Cutting Closed Loops" on page 4-33.
For example, here is a machine with two closed loops.

Cutting the top loop at the Disassembled Prismatic and removing the Parallel Constraint block (thus simultaneously cutting the bottom loop) yields the machine's spanning tree, as shown here.

Determining the Validity of a Spanning Tree

To be valid, a spanning tree must meet these requirements:

- The spanning tree must have at least one Ground block to serve as a reference to World.
- Every Joint block must be connected to exactly two Body blocks.
- Every non-Ground Body block must have a unique path to a Ground block. (This need not be true of the machine itself.) This ensures that, while each body moves via joints relative to other bodies, SimMechanics can resolve all bodies' motions into absolute motions with respect to World.
- Every non-Ground Body block at an end of a sequence of Bodies must have nonzero inertia (mass or inertial moment) associated with all joint primitives that can move. Each translational DoF must carry a nonzero mass, and each rotational DoF a nonzero inertial moment. This prevents infinite accelerations when forces and torques are applied.

Examples of Invalid Machine Topologies

Here are some examples of invalid topologies:

- This one-loop machine lacks a Ground block.

- This open machine has a dangling Joint block.

- Another open machine features a zero-mass body at one end of a chain of bodies.

The last two invalid examples are dynamically (but not topologically) equivalent, because a zero-mass body is dynamically no body at all.

Counting Degrees of Freedom

Identifying and counting the independent degrees of freedom (DoFs) of a machine are important for trimming and linearizing SimMechanics models (see "Trimming Mechanical Models" on page 8-16 and "Linearizing Mechanical Models" on page 8-28) and for correcting simulation errors (see "Troubleshooting Simulation Errors" on page 5-16).

Your SimMechanics model must have at least one DoF to be valid. A free physical body has six DoFs: three translational and three rotational. But in a machine, connections between bodies by joints, constraints, and drivers, and motion actuation by joint and body actuators reduce the machine's independent DoFs to a smaller number. You also reduce a body's DoFs if you confine the machine's motion to one or two spatial dimensions.

In SimMechanics, a Body block has no DoFs. Connecting Joints to a Body adds DoFs to the machine. The joint primitives represent the Body's DoFs relative to other connected Bodies or Grounds. Connecting Constraint and Driver blocks to Bodies or motion-actuating joint primitives in Joints removes DoFs from the machine.

Finding Independent Degrees of Freedom

Here is the formula for determining the number of independent DoFs your model has:
\# of independent DoFs = \# of body DoFs + \# of primitive DoFs \# of motion restrictions

The following three steps define each term on the right side:
1 Calculate the number of body DoFs from the number of Body and Joint blocks in your model:
\# of body DoFs $=6$ * (number of Bodies - number of Joints)
If you have confined the machine to move in only two dimensions, replace the 6 by 3 . If you have confined the machine to move in only one dimension, replace the 6 by 1 .

2 Calculate the number of primitive DoFs by adding up the primitive DoFs from the Joint dialog boxes:

- Count one for each prismatic (P) or revolute (R) primitive.
- Count three for each spherical (S) primitive.
- Count zero for each weld (W) primitive.

Do not count a primitive DoF that is motion-actuated by a Joint Actuator.
3 Calculate the number of motion restrictions by adding up the motion restrictions of each Constraint and Driver block. Different blocks from the

Constraints \& Drivers library impose different numbers of motion restrictions.

| Constraint Block | Restrictions | Driver Block | Restrictions |
| :--- | :--- | :--- | :--- | :--- |
| Gear | One | Angle | One |
| Parallel | Two | Distance | One |
| Point-Curve | Two | Linear | One |
| | | Velocity | One |

Be sure not to count redundant motion restrictions. These are restrictions that forbid the motion of joint primitives that could not move anyway even if the constraint were removed, because of how the joints are configured.

Example: A body is connected to a ground by a single prismatic. You place a constraint on the body that prevents it from moving perpendicularly to the prismatic axis. The body could not move in that direction even if you removed the constraint. So the constraint is redundant, and you would not count it as a motion restriction.

DoF Example: Double Pendulum

The mech_dpen model from the Demos library represents planar double pendulum motion actuated by a Joint Actuator.

The double pendulum has two rigid bodies, such as two rods, confined to move in two dimensions. Ignoring the Joint Actuator temporarily, there are two bodies, two joints, and two revolute primitives, and thus $3 *(2-2)+2=2$ independent DoFs. There are many ways to represent these two DoFs, but the two revolute primitives are the simplest way.

Including the Joint Actuator in the DoF count removes the revolute primitive in the Revolute block as an independent DoF. So this model actually only has one independent DoF, the revolute primitive in the Revolute 1 block.

DoF Example: Four Bar Mechanism

The example in "A Four Bar Mechanism" on page 2-36 has four revolutes. You can establish that only $3 *(3-4)+4=1$ of these DoFs is actually independent and arrive at the same result obtained in the example.

Running Mechanical Models

SimMechanics gives you multiple ways to simulate and analyze machine motion in the Simulink environment. Running a mechanical simulation is similar to running a simulation of any other type of Simulink model. It entails setting various simulation options, starting the simulation, and dealing with simulation errors. See the Using Simulink guide for a general discussion of these topics. This chapter focuses on aspects of simulation specific to SimMechanics models.

Running SimMechanics Models in Simulink (p. 5-2)
 Configuring a Machine's Mechanical Environment (p. 5-3)
 Controlling the Simulation (p. 5-10)
 How SimMechanics Works (p. 5-14)
 Troubleshooting Simulation Errors (p. 5-16)

Improving Performance (p. 5-22)
Generating Code (p. 5-26)

Limitations (p. 5-31)

Overview of configuring Simulink and SimMechanics to simulating mechanical systems
Special settings in SimMechanics for running mechanical models

Configuring Simulink to run mechanical models
How SimMechanics analyzes and simulates a mechanical model

Interpreting and fixing SimMechanics simulation errors

Enhancing SimMechanics simulation speed and accuracy
Using Real-Time Workshop ${ }^{\circledR}$ to translate your SimMechanics models into C code

How to use compatible Simulink simulation tools with SimMechanics models

Running SimMechanics Models in Simulink

Simulink provides an extensive set of simulation options that apply to any type of model. SimMechanics provides additional options that apply specifically to simulating mechanical models. This chapter discusses those standard Simulink options for which mechanical models entail special consideration and the additional mechanical system-specific options of SimMechanics.

Distinguishing Models and Machines

Following the distinction introduced in "Modeling Machines" on page 4-2, SimMechanics requires you to make two categories of settings, one for each machine in a model and one for the entire model.

- "Machine Settings via the Machine Environment Block"
- "Model-Wide Settings via Simulink"

The first uses the Machine Environment block dialog, the second the Simulink Configuration Parameters dialog. To configure a mechanical model for simulation, you need to interact with both dialogs.

Machine Settings via the Machine Environment Block

Mechanical settings for a specific machine are located in that machine's connected Machine Environment block. This block controls the machine's mechanical environment, including simulation dynamics, machine dimensionality, gravity, tolerances, constraints, motion analysis modes, and visualization. See "Configuring a Machine's Mechanical Environment" on page 5-3 for details.

Model-Wide Settings via Simulink

Mechanical and general settings for an entire model are located in the Simulink Configuration Parameters dialog. Every node in this dialog is relevant to controlling your model's simulation, including visualization. At a minimum, you need to examine the settings in the Solver and SimMechanics nodes. See "Controlling the Simulation" on page 5-10 for details.

Configuring a Machine's Mechanical Environment

Each machine in your model has a connected Machine Environment block. This block controls the mechanical environment for that machine. Unless otherwise noted, this section refers exclusively to this block's dialog. The Machine Environment settings include the following:

- "Setting Gravity"
- "Choosing Your Machine's Dimensionality"
- "Setting Assembly Tolerances" on page 5-5
- "Implementing Constraints" on page 5-5
- "Analyzing the Motion" on page 5-7
- "Handling Motion Singularities" on page 5-9

The Machine Environment Block

Every machine in your model requires exactly one Machine Environment block to be connected to one of its Ground blocks. The settings that you enter in that Machine Environment block determine the mechanical environment for that machine only. Other machines are controlled by their respective Machine Environment blocks.

This section guides you through the major choices you implement through this dialog's four panes. See the Machine Environment reference page for a complete description.

Setting Gravity

A uniform gravity field is applied to the motion of every machine. The default is a constant vector of [$0-9.810$] with units of meters/seconds ${ }^{2}$ and x-, y-, and z-components, respectively.

You can change this value to a different constant vector by modifying the entry in the Gravity vector field of the Parameters pane of the Machine Environment dialog. You can change the units by using the units pull-down menu.

Gravity as an External Simulink Signal

In addition to constant gravity, SimMechanics lets you apply a time-varying, albeit spatially uniform, gravity vector through a Simulink signal. You enable
this option by selecting the Input gravity as signal check box in the Parameters pane.

Once you make this selection, the Machine Environment block acquires a Simulink inport to accept this Simulink signal. The signal must be a three-component vector. You can still change the units through the pull-down menu.

Choosing Your Machine's Dimensionality

In general, you simulate machine motion in all three spatial dimensions. If a machine can move in only two dimensions, however, ignoring the third dimension makes the simulation more efficient. By default, SimMechanics automatically determines whether your machine moves in all three or only two dimensions and optimizes the simulation accordingly.

You can override this default by requiring SimMechanics to simulate in either three or two dimensions. You choose the simulation dimension of a machine in the Machine dimensionality pull-down menu of the Parameters pane of the Machine Environment dialog. If you attempt to simulate a three-dimensional machine in two dimensions, the simulation stops with an error.

Determining the Dimensionality of Your Machine Manually

Your machine must meet certain criteria before SimMechanics can simulate it in two dimensions:

- The prismatic primitives must define a set of parallel planes.
- The revolute primitives must rotate about axes perpendicular to the prismatic planes.

The bodies of a two-dimensional machine do not all have to lie in a single plane, but they should only slide and rotate in parallel planes.

Blocks That Require Three-Dimensional Simulation

The SimMechanics library contains certain blocks that, if you use them in a machine, require you to simulate in three dimensions.

- Any Joint block with more than two prismatic primitives, more than one revolute primitive, or any spherical primitives
- Disassembled Joints
- Massless connectors

Code Generated from Two-Dimensional Models

Code generated from simulations restricted to two-dimensional motion is also restricted to two-dimensional motion. See "Restrictions on Code Generated from Two-Dimensional Machines" on page 5-30.

Setting Assembly Tolerances

The linear and angular assembly tolerance specify the precision with which

- A model must specify the initial locations and angles of a machine's joints.
- SimMechanics must solve the initial positions and angles of a machine's unassembled joints.

The Parameters pane of Machine Environment allows you to change the default assembly tolerances in the Linear assembly tolerance and Angular assembly tolerance fields. You can also adjust the linear and angular units in the respective pull-down menus.

How SimMechanics Implements Assembly Tolerances

SimMechanics checks the locations and angles of a machine's assembled joints when it initializes the model and later during the simulation. If any of the joint locations or angles fails to meet the corresponding assembly tolerances, Simulink halts the simulation and displays an error message. If this happens, you should check your machine to ensure that it specifies the locations and angles of its assembled joints to the precision specified in the Parameters pane. If not, either change the locations and angles that fail to meet the assembly tolerances or increase the tolerances themselves.

Implementing Constraints

If your machine contains implicit or explicit constraints on a system's motion, SimMechanics uses one of the three possible constraint solvers to find a solution for the motion that meets the constraints:

- Stabilizing solver
- Tolerancing solver
- Machine precision solver

This section describes the constraint solvers. These constraint choices are found on the Constraints pane of the Machine Environment dialog. If you choose the tolerancing solver, you must also specify the constraint tolerances.

Stabilizing Constraint Solver

This solver adds a self-correcting term to the equations of motion that stabilizes the numerical solution, i.e., causes it to evolve toward, rather than drift away from, the actual solution. SimMechanics uses this solver by default. It is typically faster than the other solvers, but can settle into a solution that exceeds the machine's assembly tolerances. If assembly tolerance errors occur during the simulation, use one of the other solvers instead.

Tolerancing Constraint Solver

This solver finds the system's motion while imposing the constraints to the tolerance that you specify. Specifically, the solver stops refining the solution when the difference between two successive solutions satisfies the condition

$$
\mid \text { error }|<| r t o l * x+\text { atol } \mid
$$

where error is the difference between successive solutions, r rol is the relative constraint tolerance, x is the motion to be solved, and atol is the absolute constraint tolerance. See "Setting Constraint Tolerances" following.

This solver is recommended if you plan to run the simulation in Kinematics mode.

Setting Constraint Tolerances

If you use the tolerancing solver, the constraint tolerances that SimMechanics uses are under your control. You can view and change the constraint tolerances in the Relative tolerance and Absolute tolerance fields of the Constraints pane.

Machine-Precision Constraint Solver

Solves the constraints to the numerical precision of the computer on which the simulation is running. Select this solver if you want to obtain the most accurate simulation permitted by the computer, regardless of simulation time.

Analyzing the Motion

You can use SimMechanics to compute

- The motion that results from applying forces to a mechanical system (forward dynamics)
- The forces required to produce a specified motion in a mechanical system (inverse dynamics)
- The steady-state motion of a mechanical system (trimming)
- The effect of slightly perturbing a mechanical system's motion (linearization)

To compute any of these results, you must build an appropriate model and choose an appropriate mode of motion analysis.

Choosing an Analysis Mode

The Parameters pane of the Machine Environment dialog allows you to choose the analysis mode you want to simulate in. You make this choice via the Analysis mode pull-down menu.

Forward Dynamics Mode

This mode computes the positions and velocities of a system's bodies at each time step, given the initial positions and velocities of its bodies and any forces applied to the system. Use this mode to simulate a model that represents the initial positions and velocities of the system's bodies and the forces on those bodies.

Run these examples in the Forward Dynamics mode:

- "Running a Demo Model" on page 1-6
- "Building a Simple Pendulum" on page 2-11 and "A Four Bar Mechanism" on page 2-36
as well as the many examples of the "Modeling Mechanical Systems" chapter.

Inverse Dynamics Mode

This mode computes the forces required to produce a specified velocity for each body of an open-loop system. Use this mode to simulate an open-loop system whose model specifies the velocity of every degree of freedom of every body at every time step.

See "Inverse Dynamics with a Double Pendulum" on page 8-11 for an example of using this mode to find the forces on an open-loop system.

Kinematics Mode

Computes the forces required to produce a specified velocity for each body of a closed-loop system. Use this mode to simulate a closed-loop system whose model specifies the velocity of every independent degree of freedom at every time step. The tolerancing constraint solver is recommended in this mode. (See "Implementing Constraints" on page 5-5.)

See "Kinematics with a Four Bar System" on page 8-7 for an example of using this mode to find the forces on a closed-loop system.

Trimming Mode

This is a variant of Forward Dynamics mode that allows you to run the Simulink trim command on your model. The trim command in turn allows you to find steady-state solutions for your model.
Trimming mode inserts a subsystem and an output port at the top level of your model. These blocks output signals corresponding to the constraints on the system represented by your model. Configure the trim command to find equilibrium points where the constraint signals are zero. This ensures that the equilibrium points found by the trim command satisfy the constraints on the modeled system.

See "Trimming Mechanical Models" on page 8-16 for examples of using this mode to find the equilibrium points of a mechanical system.

Special Settings If You Linearize a Machine

You can determine the effect of small perturbations on system motion by linearizing your machine. To linearize, set the analysis mode to Forward Dynamics and run the Simulink linmod command on your model.

You can fix the size of the perturbation or let SimMechanics find an optimal perturbation for you. Enter these settings in the Linearization pane.

See "Linearizing Mechanical Models" on page 8-28 for examples of using this mode to find the effect of small perturbations on mechanical motion.

Handling Motion Singularities

At certain simulation times, one or more degrees of freedom in a mechanical system might change relatively quickly compared to the others. If these sudden, quick motions are too fast compared to the slower motions, Simulink and SimMechanics have difficulty finding an accurate solution in a reasonable simulation time. Imposing constraints on the motion often exacerbates this problem. In extreme cases, the simulation can stop with an error.

You can alleviate these motion singularities by selecting the Use robust singularity handling on the Constraints pane of the Machine Environment dialog.

See "Adjusting Constraint Tolerances" on page 5-23, "Smoothing Motion Singularities" on page 5-24, and "Changing the Simulink Solver and Tolerances" on page 5-24 for more discussion of motion singularities and their relationship to the Simulink solvers.

Controlling the Simulation

The simulation controls for an entire model are located in the Configuration Parameters dialog, accessed through the Simulink Simulation menu. See the Simulink documentation for complete details about this dialog. This section, unless otherwise noted, refers exclusively to this dialog.

You must check and possibly adjust two nodes of this window, Solver and SimMechanics, before running a mechanical model.

Simulink Configuration Parameters Dialog (SimMechanics Node Shown)

The controls specific to SimMechanics are located on the SimMechanics node, which has two active areas, Diagnostics and Visualization.

- "Controlling SimMechanics Simulation Diagnostics" on page 5-11
- "Visualizing Your Machines" on page 5-12

The choice and configuration of the solver are Simulink settings, located on the Solver node. This node has two active areas, Simulation time and Solver options.

- "Choosing a Simulink Solver" on page 5-12

Once SimMechanics and Simulink are configured, you can run your model.

- "Starting the Simulation" on page 5-13

Controlling SimMechanics Simulation Diagnostics

SimMechanics can provide certain diagnostics to help you understand and, if necessary, troubleshoot simulation problems and errors. You can adjust these diagnostics in the Diagnostics area of the SimMechanics node of Configuration Parameters.

[^0]See "How SimMechanics Works" on page 5-14 and "Troubleshooting Simulation Errors" on page 5-16 to learn about correcting SimMechanics simulation errors.

Warning on Redundant Constraints

Selecting the Warn if machine contains redundant constraints check box causes SimMechanics to warn you if there are more constraints than necessary in your model. This situation by itself does not cause simulation errors. But too many constraints might lead, during simulation and in certain configurations, to conflicting constraints and errors.

The check box is selected by default.

Warning on Unstable Constraints in Initial State

Selecting the Warn if number of initial constraints is unstable check box causes SimMechanics to warn you if small changes to your model's initial state leads to changes in the number of constraints. During simulation and in certain configurations, this instability could lead to too few or too many (conflicting) constraints on your system and prevent SimMechanics from finding a solution for the motion.

The check box is unselected by default.

Marking Automatically Cut Joints

Selecting the Mark automatically cut joints check box causes Simulink to mark the icons of Joint or Constraint/Driver blocks that it cuts during
simulation of the model. See "Cutting Closed Loops" on page 4-33 for an additional discussion. The check box is unselected by default.

Visualizing Your Machines

Configuring visualization requires three steps. See "Starting SimMechanics Visualization" on page 6-2 for complete details about SimMechanics visualization.

- You enter the visualization settings for an entire model in the Visualization area of the SimMechanics node of the Configuration Parameters dialog. To open visualization, you must select at least one of these check boxes. Model-wide visualization is turned off by default.
- You can choose whether or not to visualize a specific machine in your model through the Visualization pane of its Machine Environment dialog. A single window displays all selected machines in a model.
- All other visualization controls are located on the SimMechanics visualization window itself.

Choosing a Simulink Solver

SimMechanics uses one of the ordinary differential equation (ODE) solvers of Simulink to solve a system's equations of motion, typically in tandem with a constraint solver (see "Implementing Constraints" on page 5-5).

Simulink provides an extensive suite of ODE solvers that represent the most advanced numerical techniques available for solving differential equations in general and equations of motion in particular. The Solver node of the Configuration Parameters dialog allows you to select any of these solvers for use by Simulink in solving the model's dynamics. See the Simulink documentation for complete details about choosing a Simulink solver.

Setting Simulink Solver Tolerances

By default Simulink automatically determines the absolute tolerance used by ODE solvers. The resulting tolerance might not be small enough for a mechanical system, particularly a nonlinear or chaotic system. Try running a simulation with the relative tolerance set to $1 \mathrm{e}-3$ (the default) and the absolute tolerance set to $1 \mathrm{e}-4$. Then increase the tolerances if the simulation takes too long or decrease them if the solution is not sufficiently accurate.

Solver Tolerances and Stiction

If your model contains one or more Joint Stiction Actuator blocks, you must also take into account the velocity thresholds of these blocks when setting the absolute tolerance of the ODE solver. If the absolute tolerance of the solver is greater than a joint's velocity threshold, the simulation might never detect the locking or unlocking of a joint. To prevent this from happening, set the absolute tolerance to be no more than 10% of the size of the smallest stiction velocity threshold in your model.

Starting the Simulation

Once Simulink and SimMechanics are configured to simulate a mechanical system, you can run your model.

As the simulation proceeds, you might encounter warnings, errors, and unexpected or unsatisfactory results. Consult these sections to learn how to identify errors and improve your simulation.

- "How SimMechanics Works" on page 5-14
- "Troubleshooting Simulation Errors" on page 5-16
- "Improving Performance" on page 5-22
- "Generating Code" on page 5-26
- "Limitations" on page 5-31

How SimMechanics Works

You might find a brief overview of how SimMechanics works helpful for constructing models and understanding errors.

There are four major steps of the machine simulation sequence. The first two occur before SimMechanics actually starts machine motion.

1 "Model Validation"
2 "Machine Initialization"
3 "Force Analysis and Motion Integration" on page 5-15
4 "Stiction Mode Iteration" on page 5-15
Fixing errors is discussed in "Troubleshooting Simulation Errors" on page 5-16.

Model Validation

SimMechanics first checks your data entries from the dialogs and the local connections among neighboring blocks. It then validates the Body coordinate systems; the joint, constraint, and driver geometries; and the model topology.

Machine Initialization

The assembly tolerances of Joints that you manually assembled are checked next.

SimMechanics then cuts each closed loop once. An invisible internal constraint replaces each cut Joint, Constraint, or Driver block. SimMechanics checks all constraints and drivers for mutual consistency and eliminates redundant constraints. It also checks whether a small perturbation to the initial state changes the number of constraints. Such a singularity might lead, during machine motion, to violation of the constraints.

Any Joint Initial Condition Actuators now impose initial positions and velocities, changing body geometries from their dialog box configurations as necessary. SimMechanics then finds an assembly solution for disassembled joints and initializes them in position and velocity. Assembly tolerances are checked again.

A "sticky" joint primitive, actuated by a Joint Stiction Actuator, can be in one of three stiction modes: locked, waiting, or unlocked. SimMechanics finds a mutually consistent set of stiction modes for all sticky joints.

Force Analysis and Motion Integration

In Forward Dynamics or Trimming analysis mode, SimMechanics now begins the solution of machine motion by applying and integrating external forces and torques, stepping in simulation time. It maintains assembly, constraint, and solver tolerances and checks constraint and driver consistency. It also detects whether, within one Joint block, distinct joint primitive axes align and destroy an independent DoF (joint axis singularity).

In Inverse Dynamics and Kinematics modes, SimMechanics now applies motion constraints, drivers, and actuators to find the machine motion and derive forces and torques. It also checks tolerances and consistency and detects singular alignment of joint primitives.

Stiction Mode Iteration

If stiction is present, SimMechanics checks at each time step whether the sticky joints transition from one stiction mode to another, then checks for mutual consistency of locked and unlocked sticky joint primitives across the whole machine.

Troubleshooting Simulation Errors

SimMechanics simulations can stop before completion with one or more error messages. You might find the previous section, "How SimMechanics Works" on page 5-14, useful for tracing errors. Some common errors also appear in "Modeling Machines" on page 4-2 and "Checking Model Validity" on page 4-68. This section discusses generic error types.

Most errors and error-fixing strategies fall into broad categories. These groupings are reflected in the keywords occurring in the error messages that SimMechanics displays. These sections summarize these groupings.

- "Data Validation Errors"
- "Ground and Body Geometry Errors"
- "Joint Geometry Errors" on page 5-17
- "Block Connection and Topology Errors" on page 5-17
- "Motion Inconsistency and Singularity Errors" on page 5-18
- "Analysis Mode Errors" on page 5-21

Data Validation Errors

Every numerical entry you make in SimMechanics must be a real numerical expression or MATLAB equivalent. Spatial vectors are 3-vectors, such as [3 4 5]. Spatial tensors are 3-by-3 matrices, such as rotation matrices and the inertia tensor.

Note You can specify a two-dimensional curve in the Point-Curve Constraint block with 2 -vectors.

Ground and Body Geometry Errors

Every machine must have a least one Ground block. Every Body block must have at least one Body CS, defined at the body's center of gravity (CG). You must directly or indirectly define the Body coordinate systems (CSs) of a machine relative to a Ground or to World. You cannot enter cyclic (circular) Body CS definitions. The Body CS definitions must separately satisfy these criteria in the Position and Orientation tabs of the Body dialog.

For example, defining CS3 relative to CS2, defining CS2 relative to CS1, then defining CS1 relative to CS3, results in a definition that is both cyclic and missing any reference to a Ground or World. You could break the cycle by referencing CS1 to a Ground or to World.

To be rendered in visualization, a Body must be connected to at least one Joint that is connected to the rest of the machine. You cannot visualize with equivalent ellipsoids a body whose principal inertial moments do not satisfy the triangle inequalities. (See "Rendering Body Shapes in SimMechanics" on page 6-5.)

Joint Geometry Errors

The geometric configuration of joints, constraints, and drivers can conflict with assembly requirements and restrictions on certain blocks.

Assembly Tolerances Violated

Assembled joints must satisfy assembly tolerances on their connected Body CSs at all times. Disassembled joints assembled at machine initialization must also satisfy assembly tolerances during the simulation.

Zero Massless Connector Distance

The initial distance between two Body CS origins connected by a massless connector must be nonzero. The massless connector holds the distance between two Body CS origins constant during motion.

Composite Joints: Restrictions Among Primitives

Certain composite Joint blocks place restrictions on their primitive joint axes. For example, Bearing must have its prismatic axis P1 aligned to its third revolute axis R3.

Block Connection and Topology Errors

General rules on how to connect SimMechanics blocks are discussed in the "Modeling Mechanical Systems" chapter. In particular, consult these sections of that chapter:

- "Modeling Machines" on page 4-2
- "Checking Model Validity" on page 4-68

Some restrictions are properties of individual blocks, as explained in their reference pages. See the SimMechanics Block Reference.

Motion Inconsistency and Singularity Errors

Inconsistencies in motion arise from misapplication of constraints, drivers, and actuators, from conflicting stiction requirements, and incorrect simulation dimensionality.

Motion simulation errors often occur because of singularities or dividing by very small numbers. SimMechanics can integrate certain singularities, at a cost (see "Choosing a Simulink Solver" on page 5-12).

Zero Masses and Moments of Inertia

A body moving on a prismatic axis must have nonzero mass if you actuate it with forces. A body rotating about a revolute axis or pivoting about a spherical must have nonzero inertial moments about the axis or pivot if you actuate it with torques. If you want a massless rigid body, consider using a Massless Connector from the Joints/Massless Connectors sublibrary.

Abstract

Note You can use point bodies (nonzero mass but zero moments) in SimMechanics, if the connected revolute axes and spherical pivots are dislocated from the body. Although the moments are zero about a point body's CG, the displacement of the body from the axis or pivot shifts the moments from zero to nonzero values.

Alignment of Distinct Primitives

Within a single Joint block, two distinct prismatic axes or two distinct revolute axes should never align during the simulation. If either occurs, a translational or rotational DoF is lost, and SimMechanics cannot determine the subsequent motion. An example of primitive axis alignment singularity is "gimbal lock." Two of the three revolute primitive axes in the Gimbal block become parallel, reducing the number of independent DoFs in the Joint from three to two.

No Degrees of Freedom

Your machine cannot move if it has no degrees of freedom. Each Constraint, Driver, and motion-actuating Actuator block you add to a machine reduces the
number of independent DoFs. (See "Counting Degrees of Freedom" on page 4-71.) Cure such errors by removing one or more of these blocks from your machine, until you have at least one independent DoF.

Incorrect Machine Dimensionality

You cannot run a three-dimensional machine with a simulation restricted to two dimensions. See "Choosing Your Machine's Dimensionality" on page 5-4.

Redundant Constraints

Some constraints can restrict what another constraint is already restricting. Fix these errors by identifying and removing the redundancies.

Violated Constraints

Some machine motions or simulations might not be able to maintain assembly tolerances at a particular simulation step while simultaneously satisfying the constraints. One or more joints become disassembled, followed by an error.

You can correct this situation in several ways. First, identify the joint, constraint, or driver causing the error and examine its physical configuration when the error occurs to isolate the conflict. Then try any combination of these steps:

- Decrease the Simulink solver tolerances.
- Switch to a more robust Simulink solver.
- Decrease the constraint solver tolerances.
- Switch to the machine precision constraint solver.
- Increase the assembly tolerances.

See "Choosing a Simulink Solver" on page 5-12 and "Implementing Constraints" on page 5-5.

SimMechanics tries to harmonize your choices of ODE solver and solver tolerances, constraint solver and tolerances, and assembly tolerances in this dynamic hierarchy:

Conflicting Actuators

You cannot put more than one actuator on a joint primitive.

Note You can simultaneously place an initial condition actuator and a force/torque actuator on a joint primitive.

The Joint Stiction Actuator block does accept an input signal for nonfrictional forces/torques, which the block adds to the stiction.

Sticky Joints in Conflict

If your machine has two or more stiction-actuated ("sticky") joints, a conflict among them can put SimMechanics into an infinite loop and prevent determination of the machine motion. Or one locked joint can prevent the other joints, sticky or not, from moving. The machine stops moving.

For example, one sticky joint becomes unlocked and requires the other to lock, which then requires the first to lock.

Remove these conflicts by removing one or more stiction actuators or by changing the Joint Stiction Actuator locking thresholds.

Analysis Mode Errors

Certain restrictions apply to the analysis modes presented in "Analyzing the Motion" on page 5-7. Consult individual analysis modes for more:

- "How SimMechanics Works" on page 5-14
- "Finding Forces from Motions" on page 8-6
- "Trimming Mechanical Models" on page 8-16
- "Linearizing Mechanical Models" on page 8-28

Improving Performance

SimMechanics is a general-purpose mechanical simulator. With it, you can model and simulate many types of machines with very different behaviors. In some cases, the settings you use for "well-behaved" machines are not optimal for more-difficult-to-simulate systems. Simulink and SimMechanics give you great freedom to change the mathematical and mechanical settings used in your simulations. Use this flexibility to avoid simulation errors and optimize performance, subject to the fundamental tradeoff between speed and accuracy.

- "Simplifying the Degrees of Freedom"
- "Adjusting Constraint Tolerances" on page 5-23
- "Smoothing Motion Singularities" on page 5-24
- "Changing the Simulink Solver and Tolerances" on page 5-24
- "Adjusting the Time Step in Real-Time Simulation" on page 5-25

Consult "Generating Code" on page 5-26 to learn about speeding up simulations by generating and compiling code from your models.

Simplifying the Degrees of Freedom

In general, the more degrees of freedom (DoFs) you add to your model, the slower the simulation.

Eliminating Unnecessary Degrees of Freedom

Under certain circumstances, a model can end up containing DoFs not practically necessary to predict system behavior. For example, a subsystem might contain very light masses whose motion is almost completely determined by the heavier masses in the system and that have almost no inverse influence on the larger system.

Consider freezing or eliminating such degrees of freedom from your model in order to speed up the simulation.

Freezing "Fast" and "Slow" Degrees of Freedom

A related distinction can be made between DoFs that change rapidly and those that change slowly. Such systems are "stiff" (literally, in the case of a stiff spring that oscillates at a very high frequency) and often hard to simulate accurately in a reasonable time.

One approach to improving the speed is to selectively freeze certain DoFs.
1 First, freeze or eliminate the "fast" DoFs and simulate only the "slow" DoFs.
2 Then freeze the "slow" DoFs in some representative configuration and simulate the motion of only the "fast" DoFs.

Such a split simulation between "fast" and "slow" DoFs can isolate important features of the system behavior, while ignoring unimportant features.

Caution Splitting DoFs between "fast" and "slow" sets and simulating the two sets separately neglects coupling between the two sets of DoFs. Only a full simulation can capture such coupling.

See "Solving Stiff Systems" on page 5-24 for a different approach to handling speed mismatches among DoFs.

Removing Stiction Actuators

Stiction requires computationally expensive algebraic loops. If possible, remove Joint Stiction Actuator blocks from your model to speed it up.

Simulating in Two Dimensions

If your machine moves in only two dimensions, not three, it qualifies for the special SimMechanics two-dimensional simulation option. By reducing the linear and rotational directions from three to two and three to one, respectively, this option can noticeably improve simulation performance.

See "Choosing Your Machine's Dimensionality" on page 5-4.

Adjusting Constraint Tolerances

Maintaining constraints on a system's DoFs is a major and computationally expensive part of a simulation. If your simulation seems to run slowly or stops with constraint errors, especially when the mechanism passes through certain configurations, consider relaxing the constraint tolerances. This step generally speeds up the simulation, although it also makes the simulation less accurate. Decreasing the tolerances increases the accuracy of the simulation but can increase the time required to simulate the model.

To view and change these settings in your machine, see "Implementing Constraints" on page 5-5.

Smoothing Motion Singularities

Singularities in a system's equations of motion can dramatically slow down a standard Simulink solver or even prevent it from finding a solution to a system's equations of motion. Because mechanical motion can become singular, SimMechanics provides the optional feature of robust singularity handling, which works together with your selected Simulink solver to solve singular equations of motions efficiently. This feature allows Simulink in many cases to simulate models that otherwise cannot run or cannot be solved in a reasonable amount of time.

To enable this feature for a machine in your model, select Use robust singularity handling on the Constraints pane of that machine's Machine Environment dialog. This option requires extra computation whether or not singularities exist. Select it only if you cannot find a Simulink solver that solves your model in a reasonable amount of time without it.

Changing the Simulink Solver and Tolerances

The Dormand-Prince solver (ode45) that Simulink uses by default works well for many mechanical systems. But if your simulation seems to be slow and/or inaccurate you should consider changing the solver and/or adjusting the solver's relative and absolute tolerances. Chaotic and highly nonlinear systems especially require experimentation with different solvers and tolerances to obtain optimal results.

Consult the Using Simulink documentation for more about choosing Simulink solvers and tolerances.

Solving Stiff Systems

The default ode45 Simulink solver typically requires too much time to solve systems that are stiff, that is, that have bodies moving at widely differing speeds or that have many discontinuities in their motions. An example of a stiff system is a pair of coupled oscillators in which one body is much lighter than the other and hence oscillates much more rapidly. Any of the following Simulink solvers might require significantly less time than the default solver to solve a stiff system:

- ode15s: Variable-order solver based on a backward differentiation rule.
- ode23t: Trapezoidal rule solver. Use if your system is slightly stiff, to avoid numerical damping.
- ode23tb: Implicit Runge-Kutta method solver. More efficient than ode15s if the solution has many discontinuities.
- ode23s: Modified Rosenbrock method solver of order 2. This solver is also more efficient than ode15s, if the solution has many discontinuities.

Real-Time Simulation and Ignoring Motion Details with Fixed-Step Solvers

For most mechanical systems, variable time-step solvers are preferable. Fixed time-step solvers, depending on the size of the time step, often fail to resolve certain motion details.

Using a fixed-step solver can be advantageous in some cases, however:

- If you want to ignore unimportant motion details. Ignoring them can speed up your simulation, especially for a larger time step.
- If you are simulating in real time with generated code. Fixed-step solvers are typically, but not exclusively, the norm for real-time simulation.

For such cases, choose one of Simulink's fixed-step solvers and select the largest time step that produces reasonable simulation results.

Most of Simulink's fixed-step solvers are explicit. For stiff systems and larger time steps, an implicit solver such as the ode14x fixed-step solver can be superior to an explicit solver in speed and accuracy.

Adjusting the Time Step in Real-Time Simulation

A real-time simulation using code generated and compiled from your model must keep up with the actual mechanical motion. To this end, you must ensure that the solver time step is greater than the computation time needed by your compiled model.

To meet this condition, you might have to increase the time step or decrease the computation time. Increasing the time step often requires removing the model's "fast" DoFs. Decreasing the computation time requires simplifying your model. You can do this most easily by removing DoFs and/or constraints. See "Simplifying the Degrees of Freedom" on page 5-22.

Generating Code

You can use SimMechanics together with Real-Time Workshop to generate stand-alone C code from your mechanical models and enhance simulation speed and portability. Certain features of Simulink itself make use of generated or external code. This section explains these features.

- "Using Code-Related Products and Features"
- "How SimMechanics Code Generation Differs from Simulink" on page 5-28
- "Using Run-Time Parameters in Generated Code" on page 5-28

Some SimMechanics features are restricted when you translate a model into code. See "Limitations" on page 5-31.

Note Code generated from SimMechanics models is intended for rapid prototyping and hardware-in-the-loop applications. It is not intended for production use.

Using Code-Related Products and Features

Simulink, SimMechanics, Real-Time Workshop, and xPC Target, using several code-related technologies, enable you to link existing code to your models and generate code versions of your models.

Code-Related Task	Component or Feature
Link existing code written in C or other supported languages to Simulink models	Simulink S-functions to generate customized blocks
Speed up Simulink simulations	Simulink® Accelerator*
Generate stand-alone fixed-step C code from Simulink models	Real-Time Workshop Targets: Generic Real-Time (GRT) Generic Real-Time malloc Embedded Real-Time (ERT)

Code-Related Task (Continued)	Component or Feature (Continued)
Generate stand-alone variable-step C code from Simulink models	Real-Time Workshop Rapid Simulation Target (RSIM)
Convert Simulink model to C code and compile and run it on a target PC	Real-Time Workshop and xPC Target
Generate a block representing a Simulink model	S-function Target

*Simulink Accelerator mode speeds up simulations within Simulink by using selected Real-Time Workshop components. You do not need to have Real-Time Workshop installed to take advantage of this feature. You do need to have Simulink Performance Tools installed.

This diagram summarizes the product and feature flow of generating code from models and linking existing code to models.

Related Simulink Code Generation Documentation

Consult the documentation for Real-Time Workshop, xPC Target, Simulink Accelerator mode, and the S-function feature for general information on installing and using these products. See "Limitations" on page 5-31 for important restrictions when using SimMechanics with these features.

How SimMechanics Code Generation Differs from Simulink

In general, using the code generated from SimMechanics models is similar to using code generated from normal Simulink models. There are certain differences.

SimMechanics and Normal Simulink Code Are Generated Separately

Real-Time Workshop generates code from the SimMechanics blocks separately from the normal Simulink blocks in your model. The generated SimMechanics code does not pass through model. rtw or the Target Language Compiler ${ }^{\circledR}$. All the code generated from a single model resides in the same directory, however.

SimMechanics Code Reuse Is Not Supported

Reusable subsystems in Simulink reuse code that is generated once from the subsystem. You cannot generate reusable code from subsystems containing SimMechanics blocks.

Using Run-Time Parameters in Generated Code

When SimMechanics generates code for a model, it creates a set of C and header files. This set includes modelname.c and modelname_data.c, containing all the model's run-time parameters. In addition, SimMechanics generates two special files separately containing data structures and function prototypes for the SimMechanics blocks alone.

The modelname.c file contains all the run-time parameters actually used in the compiled simulation. modelname_data.c and the two special SimMechanics files are auxiliaries to aid in locating and changing the run-time data.

Changing Run-Time Parameters

As with code generated from any Simulink model without parameter inlining, you can change any run-time parameters by modifying their values in the block parameters data structure implemented in modelname_data.c. In this data structure, however, SimMechanics block parameters are not associated with their original blocks. Rather, SimMechanics block parameters are grouped together into a single vector associated with the first SimMechanics S-function for each machine in the model.

The data structures and functions found in the special SimMechanics files, rt_mechanism_data.h and rt_mechanism_data.c, allow you to modify SimMechanics block parameters in generated code. The special header file contains a data structure, MachineParameters_modelname_uniqueid, for each machine in the model, that includes a field for each block run-time parameter. To modify mechanical run-time parameters,

1 Use the function rt_vector_to_machine_parameters_modelname_uniqueid in the special C file to create an instance of the machine parameters data structure from the vectorized parameters associated with the SimMechanics S-function.

2 Make the necessary modifications to the values in the data structure instance.

3 Use rt_machine_parameters_to_vector_modelname_uniqueid to reconstruct the vectorized parameters from the data structure instance.

4 Recompile your generated code.

Example: Changing a Block Parameter

This code listing is an example of a simple function that updates the mass of the first body in the demo mech_dpen. The argument p should be a pointer to the parameter vector associated with the SimMechanics S-function. The argument mass is the new mass for the first body. You should call this function before model initialization.

```
void update_mech_dpen_parameters(real_T *p, real_T mass)
{
    MachineParameters_mech_dpen_752c07b6 ds;
    /*
    * convert parameter vector into data structure
    */
    rt_vector_to_machine_parameters_mech_dpen_752c07b6(p, &ds);
    /*
    * change the mass of the first body in the double pendulum
    */
    ds.Body.Mass = mass;
```

```
        /*
    * convert the data structure back to the parameter vector
    */
    rt_machine_parameters_to_vector_mech_dpen_752c07b6(&ds, p);
}
```


Tunable Parameters Not Supported by SimMechanics Code Generation

A tunable parameter is a Simulink run-time parameter that you can change while the simulation is running. SimMechanics blocks do not support tunable parameters in either simulations or generated code.

Restrictions on Code Generated from Two-Dimensional Machines

If you generate code from a model containing one or more machines simulated in two dimensions, the generated code is also restricted to two-dimensional motion. Thus, if you change run-time parameters in the generated code, you must ensure that the new values do not violate the two-dimensional motion restriction.

The choice of machine dimensionality is either automatic or manual, but this restriction on generated code applies in either case. See "Choosing Your Machine's Dimensionality" on page 5-4.

SimMechanics Run-Time Parameter Inlining Ignores Global Exceptions

If you choose to enable parameter inlining for code generated from a SimMechanics model, SimMechanics inlines all its run-time parameters. If you choose to make some of the global SimMechanics block parameters exceptions to inlining, the exceptions are ignored. You can change global tunable parameters only by regenerating code from the model.

Limitations

Some Simulink features and tools either do not work with models containing SimMechanics blocks or work only with restrictions. Others work with SimMechanics models but only on the normal Simulink blocks in those models.

Changing Block Properties

You cannot change the block properties of SimMechanics blocks at the command line.

Restricted Simulink Tools

Certain Simulink tools are restricted in use with SimMechanics.

- Simulink configurable subsystems work with SimMechanics blocks only if all of the block choices have consistent port signatures.
- For Iterator, Function-Call, Triggered, and While Iterator nonvirtual subsystems cannot contain SimMechanics blocks.
- SimMechanics supports external mode, but without visualization.
- SimMechanics supports Simulink model referencing, but with these restrictions:
- A referencing model can reference models with SimMechanics blocks no more than once.
- SimMechanics does not support reparameterization in a referencing block.
- A referenced model must use fixed-step Simulink solvers. This requirement might create simulation inconsistencies if the referencing model does not use the same solvers. These inconsistencies could be severe if you use Joint Stiction Actuator blocks.

Unsupported Simulink Tool

The Simulink Profiler does not work with SimMechanics models.

Simulink Tools Working Only with Normal Simulink Blocks

Some Simulink tools and features do not work with SimMechanics blocks:

- Execution order tags do not appear on SimMechanics blocks.
- SimMechanics blocks do not invoke user-defined callbacks.
- You cannot tune SimMechanics block parameters during simulation.
- You cannot set breakpoints on SimMechanics blocks.
- Reusable subsystems cannot contain SimMechanics blocks.
- You cannot use the Simulink Fixed-Point Settings interface with SimMechanics blocks.
- The Report Generator does not generate information on SimMechanics blocks.

Restrictions on Two-Dimensional Simulation

Certain blocks are not supported in two-dimensional simulation mode. These include disassembled joints, massless connectors, and joints that can move in three dimensions. See "Choosing Your Machine's Dimensionality" on page 5-4.

Restrictions with Generated Code

There are certain limitations on code generated from models containing SimMechanics blocks.

Modifications to Algebraic Loops Arising from Stiction

Stiction implemented with Joint Stiction Actuator blocks requires algebraic loops iterated at a single time step to detect discrete events. In generated code versions of models with stiction, the iteration to determine joint unlocking occurs over multiple time steps.

Fixed-Point Is Not Supported by SimMechanics Code Generation

You must run code generated from models containing SimMechanics blocks on floating-point processors.

Visualizing and Animating Machines

You can visualize your machine's bodies in SimMechanics with a special window based on MATLAB Graphics. You can also construct your own virtual world and drive it as an external visualization client with SimMechanics signals by constructing your own interface.

Starting SimMechanics Visualization (p. 6-2)

Rendering Body Shapes in SimMechanics (p. 6-5)

Introducing the SimMechanics Visualization Window (p. 6-10)

Controlling Machine Displays in SimMechanics (p. 6-17)

Animating SimMechanics
Simulations (p. 6-23)
Custom Visualization with Virtual Reality (p. 6-27)

Various ways that SimMechanics renders and animates component rigid bodies of machines

Understanding and choosing body shapes for machine component visualizations

Overview of visualizing machine bodies in SimMechanics

Changing how machines are displayed in the SimMechanics visualization window

Running machine simulations and recording their animations with SimMechanics

Building a custom interface from SimMechanics to externally rendered virtual reality machines

Starting SimMechanics Visualization

Starting visualization in SimMechanics requires two choices, one for your entire model, the second for each machine in your model. These choices are part of configuring your model for simulation, as discussed in "Controlling the Simulation" on page $5-10$. Implement your visualization choices at any time by clicking Apply or OK.

- You can choose whether or not to visualize a specific machine in your model through the Visualization pane of its Machine Environment block dialog. A single window displays all selected machines in a model. By default, each machine is selected for visualization.

- You enter the visualization settings for an entire model in the Visualization area of the SimMechanics node of the Configuration Parameters dialog. To open visualization, you must select at least one of these check boxes. Model-wide visualization is turned off by default.

Visualization

To draw geometrical representation of machine, select 'Update machine visualization on update diagram.'
To animate machine while running model, select 'Animate machine during simulation.'
Γ Update machine visualization on update diagram
Γ Animate machine during simulation

Rendering Your Machines in Static Display

Select the Update machine visualization on update diagram check box if you want the SimMechanics visualization window to display the machines in your model in a static rendering. Once you select this check box, you can synchronize
the display with changes in your model by selecting Update Diagram in the Simulink Edit menu. To open the static visualization the first time, you must update your model after selecting this check box.

This check box is unselected by default.

Animating Your Machines During Simulation

Select the Animate machine during simulation check box if you want the SimMechanics visualization window to animate your machine as it moves during the simulation. If you select this check box, but not the static rendering, the visualization opens only when you start the simulation.

This check box is unselected by default.

Other SimMechanics Visualization Controls

All other visualization controls are located on the SimMechanics visualization window itself. You can access them once the window is open.

Using SimMechanics Visualization

This chapter guides you in making the appropriate visualization choices within SimMechanics. This section explains why you might want to visualize your machine's and animate its motion.

You can find more on the choice of body shapes in the next section:

- "Rendering Body Shapes in SimMechanics" on page 6-5

The three sections that follow explain the SimMechanics visualization controls:

- "Introducing the SimMechanics Visualization Window" on page 6-10
- "Controlling Machine Displays in SimMechanics" on page 6-17
- "Animating SimMechanics Simulations" on page 6-23

Rendering Versus Animation

SimMechanics visualization serves two distinct purposes, static and dynamic visualization. In both cases, you can change your observer viewpoint and navigate through the scene. You can change the body properties of the visualization only by changing the corresponding Body blocks in your model. Changing a body's mass, inertia tensor, and coordinate systems can change its visual rendering.

Static Rendering

Static rendering of machines in their initial state, during construction. Either choice is valid:

- Open the visualization before or while you build your model. You render each body as you add it to your model.
Having the visualization window open during model building lets you keep track of your machine parts and how they are connected. You can see unphysical or mistaken constructions before you finish the model.
- Open the visualization after you finish the model. All the bodies in the model appear together.

Dynamic Animation

Animation of machines while the SimMechanics model is running. Use this feature to watch the model's dynamics in three dimensions and visualize motions and relationships more easily than is possible with Scope blocks alone. The "Running Mechanical Models" chapter presents the steps for configuring and running SimMechanics models.

Creating an External Virtual Reality Client

You can bypass standard SimMechanics visualization by creating a virtual reality world of your own design to represent your machine's bodies. With Virtual Reality Toolbox, you can build a custom interface from your model to the virtual world and animate its virtual bodies:

[^1]
Rendering Body Shapes in SimMechanics

The visualization window renders the bodies in either of two shapes:

- Equivalent ellipsoid for each body, based on its mass properties and center of gravity (CG) position, explained in "Equivalent Ellipsoids" on page 6-5
- Convex hull for each body, based on its Body coordinate systems (CSs), explained in "Convex Hulls" on page 6-8

Choosing the Body Shape

You choose the body rendering in the special SimMechanics toolbar of the SimMechanics visualization window. You can render the bodies of your machine with either convex hulls, or ellipsoids, or both. See "Introducing the SimMechanics Visualization Window" on page 6-10 for visualization control details.

Equivalent Ellipsoids

The inertia tensor \boldsymbol{I} of a rigid body is real and symmetric, so it has three real eigenvalues (I_{1}, I_{2}, I_{3}) and three orthogonal eigenvectors. These eigenvectors are the principal axes of the body. In the coordinate system defined by those axes, the inertia tensor is diagonal. The trace of the inertia tensor, $\operatorname{Tr}(\boldsymbol{I})=I_{1}+$ $I_{2}+I_{3}$, is the same in any coordinate system with its origin at the body's center of gravity (CG).

Every rigid body has a unique equivalent ellipsoid, a homogeneous solid ellipsoid of the same inertia tensor. The ellipsoid surface is given by

$$
\left(\frac{x}{a_{x}}\right)^{2}+\left(\frac{y}{a_{y}}\right)^{2}+\left(\frac{z}{a_{z}}\right)^{2}=1
$$

The three parameters ($a_{\mathrm{x}}, a_{\mathrm{y}}, a_{\mathrm{z}}$) are the generalized radii of the ellipsoid. For axis $i=1,2,3$,

$$
a_{i}=\sqrt{5\left(\operatorname{Tr}(I)-2 I_{i}\right) /(2 m)}
$$

Triangle Inequalities

The principal moments $\left(I_{1}, I_{2}, I_{3}\right)$ must satisfy the triangle inequalities:

$$
\begin{aligned}
& I_{2}+I_{3} \geq I_{1} \\
& I_{3}+I_{1} \geq I_{2} \\
& I_{1}+I_{2} \geq I_{3}
\end{aligned}
$$

Violation of the triangle inequality for I_{i} leads to an unphysical imaginary generalized radius a_{i}.

Caution Visualizing the equivalent ellipsoid of a body whose principal moments do not satisfy the triangle inequalities leads to a SimMechanics warning indicating that one or more triangle inequalities have been violated. The simulation continues, but the body in violation is not displayed.

Ellipsoids with Special Symmetry

In general, all three $I_{i}, i=1,2,3$, are unequal. Such a body is an asymmetric top. If two of the three I_{i} are equal (double degeneracy), the body is a symmetric top. The third axis is the axis of symmetry. If all three I_{i} are equal (triple degeneracy), the body is a spherical top and dynamically equivalent to a homogeneous sphere.

Reduced-Dimension Ellipsoids

In special cases, the equivalent ellipsoid reduces to a planar, linear, or point figure.

Let (i, j, k) label the three axes $(1,2,3)=(x, y, z)$ in any order.

- For a true ellipsoid, with nonzero volume, all the a_{i} are nonzero. The triangle inequalities are strict inequalities in this case:

$$
\begin{gathered}
I_{j}+I_{k}>I_{i} \\
I_{k}+I_{i}>I_{j} \\
I_{i}+I_{j}>I_{k}
\end{gathered}
$$

- For an ellipse, with zero volume but nonzero area, one $a_{i}=0$ and the other two a_{j}, a_{k} are nonzero. One of the triangle inequalities becomes an equality:

$$
\begin{gathered}
I_{j}+I_{k}=I_{i} \\
I_{k}+I_{i}>I_{j} \\
I_{i}+I_{j}>I_{k}
\end{gathered}
$$

- For a line, with zero volume and area but nonzero length, two $a_{i}, a_{j}=0$ and the third a_{k} is nonzero. Two of the triangle inequalities become equalities:

$$
\begin{gathered}
I_{j}+I_{k}=I_{i} \\
I_{k}+I_{i}=I_{j} \\
I_{i}+I_{j}>I_{k}
\end{gathered}
$$

Equivalently, $I_{i}=I_{j}$ are nonzero and $I_{k}=0$.

- For a point, with no spatial size, all three a_{i} vanish. All three triangle inequalities become equalities:
$I_{j}+I_{k}=I_{i}$
$I_{k}+I_{i}=I_{j}$
$I_{i}+I_{j}=I_{k}$
Equivalently, all three I_{i} vanish.

Example: Simple Pendulum Rod

Consider the simple pendulum rod in "Visualizing a Simple Pendulum" on page 2-30. You can open the model by entering mech_spen at the command line.
The rod length $L=1 \mathrm{~m}$, and its radius $r=1 \mathrm{~cm}$. The inertia tensor is

$$
\left[\begin{array}{ccc}
I x x & 0 & 0 \\
0 & I y y & 0 \\
0 & 0 & I z z
\end{array}\right]=\left[\begin{array}{ccc}
\frac{m r^{2}}{2} & 0 & 0 \\
0 & \frac{m L^{2}}{12} & 0 \\
0 & 0 & \frac{m L^{2}}{12}
\end{array}\right]
$$

Because the rod has an axis of symmetry, the x-axis in this case, two of its three principal moments are equal: $I_{\mathrm{yy}}=I_{\mathrm{zz}}$, and two of its three generalized radii are equal: $a_{\mathrm{y}}=a_{\mathrm{z}}$. The rod is a symmetric top and, since r is much smaller than L, its equivalent ellipsoid is almost a line of zero volume and area.
The generalized radii of the equivalent ellipsoid are $a_{\mathrm{x}}=\sqrt{5 / 3}(L / 2)=0.646$ m and $a_{\mathrm{y}}=a_{\mathrm{z}}=\sqrt{5}(r / 2)=1.12 \mathrm{~cm}$. This is the rod so rendered:

Convex Hulls

Every Body has at least one Body coordinate system (CS) at the CG. A Body also has one or more extra Body CSs for the attached Joints, as well as possible Actuators and Sensors. Each Body CS has an origin point, and the collection of all these points, in general, defines a volume in space. The minimum outward-bending surface enclosing such a volume is the convex hull of the Body CSs, and this is the alternative way that SimMechanics can render a body.
To enclose a nonzero volume, the set must have at least four non-coplanar Body CSs. Three non-collinear Body CSs are rendered instead by a triangle, and two non-coincident origins by a line. One is displayed just as a point. (The
minimum one Body CS would be just the CG CS.) Four or more coplanar origins are rendered by a triangle, three or more collinear origins are rendered by a line, and two or more coincident origins are rendered by a point.

Example: Four-Cylinder Engine Crank

Refer to the four-cylinder engine model of the Demos library by entering mech_fceng at the command line.

Double-click the Engine Block subsystem and note the Crank block representing the engine crank. This Body block has six Body CSs. Visualize the engine as convex hulls with the SimMechanics visualization window. The large block in your visualization is this engine crank, and it encloses a nonzero volume.

Four Cylinder Engine Example: Engine Crank Convex Hull (Yellow)

Introducing the SimMechanics Visualization Window

The MATLAB Graphics-based visualization window is part of SimMechanics. With it, you can customize how your machines are displayed, interact with your model, and watch and record animations.

The SimMechanics visualization window features special controls. It also uses a special set of symbols to draw bodies and Body coordinate systems (CSs). This section is an overview of what you can do with the SimMechanics window:

- "Interpreting the Special SimMechanics Symbols" on page 6-11
- "Using the Standard MATLAB Graphics Controls" on page 6-12
- "Accessing the Special SimMechanics Features" on page 6-13
- "Saving and Recalling Display Settings" on page 6-15

Note This section mainly focuses on features special to SimMechanics MATLAB Graphics visualization. Certain standard MATLAB Graphics features are disabled or missing in the SimMechanics visualization window.

Refer to the MATLAB Graphics documentation for a full discussion of the graphics tools of MATLAB.

Opening and Updating the SimMechanics Visualization Window

Starting visualization and choosing the display options for the machines in your model are discussed in "Starting SimMechanics Visualization" on page 6-2.
Once you configure and start SimMechanics visualization, a customized MATLAB Graphics figure window opens and displays the machines in your model that you have chosen to visualize. One window displays all selected machines simultaneously.

To synchronize the static visualization rendering of your machines with your model, select Update Diagram from the model Edit menu at any time.

SimMechanics Visualization Window Displaying a Machine

Interpreting the Special SimMechanics Symbols

When SimMechanics opens a visualization window, it uses special conventions to render the bodies of your machine. You can control some of these conventions through the special SimMechanics menu (see "Changing Machine Display Symbols" on page 6-18).

The machine bodies are represented by one of the two SimMechanics body shapes (see "Rendering Body Shapes in SimMechanics" on page 6-5):

- The window displays all the machine's bodies. If a body has one of these associated surfaces, the surface is shaded red:
- Equivalent ellipsoid
- Convex hull of one or more surface patches (a triangle of coplanar points or an enclosing surface of four or more points)
A line convex hull is a red stick figure.
- Surfaces used in marking out enclosed convex hull volumes or planar triangles are tiled with patches.

The rendering uses two special symbols:

- The center of gravity (CG) point of each body is marked by a circle-plus symbol \bigoplus.
- Each Body CS is marked by coordinate axis triads. The color coding is X-Y-Z axes $=$ RGB $=$ red-green-blue.

Using the Standard MATLAB Graphics Controls

The main controls of the Figure Toolbar are standard on all MATLAB Graphics windows. Refer to the MATLAB Graphics documentation to learn how to configure graphics windows and objects.
For SimMechanics visualizations, the Zoom in, Zoom out, and Rotate 3D buttons are especially useful. Select the button and click in the display area to activate the feature. Click, hold, and roll the figure to rotate the machine in three dimensions.

The useful Camera Toolbar, also discussed in the MATLAB Graphics documentation, is enabled by default in SimMechanics. You can enable or disable it, as well as the Figure Toolbar, from the View menu. "Changing Perspective and Window Size" on page 6-21 discusses its role in SimMechanics visualization.

Accessing the Special SimMechanics Features

You can perform a variety of tasks with the special SimMechanics menu, submenus, and toolbar.

Once you open a visualization window in SimMechanics, you have two ways to control the machine display and carry out these tasks:

- Use the special SimMechanics menu in the middle of the menu bar. The menu contains special items and submenus. See "The Special SimMechanics Visualization Menu" on page 6-14.

- Use the buttons in the special SimMechanics toolbar. Every feature on this toolbar occurs in the special menu, although the reverse is not true. See "The Special SimMechanics Visualization Toolbar" on page 6-15.

Certain options in the SimMechanics menu toggle between enabled and disabled; for example, Enable Model Highlighting. By selecting the item, you either enable it, and a check mark appears, or you disable it, and the check mark disappears.

Other menu items, when you select them, instead trigger an immediate action, for example, Simulation > Start.

The Special SimMechanics Visualization Menu

These are the top-level items in the special SimMechanics menu.

Menu Item or Group	Feature
Machine Display	Control machine rendering
Viewpoint	Control perspective, axes, and window size
Simulation	Control model simulation
Animation	Record simulation animation
Enable Model Highlighting	Highlight Body blocks
Display Settings	Save, load, and restore SimMechanics display settings
Open Visualization Help	Open Help browser to this section of SimMechanics documentation

The Special SimMechanics Visualization Toolbar

You can activate many SimMechanics features by selecting buttons on the SimMechanics toolbar, instead of selecting items in the SimMechanics menu. The setting changes initiated by the toolbar are the same as the corresponding menu actions: either you enable or disable a feature, or you initiate an immediate action.

Hovering your mouse cursor over a toolbar button displays the button's tooltip indicating its function.

Special SimMechanics Toolbar Features

Saving and Recalling Display Settings

As you work with the SimMechanics menu, you might want to save the setting changes that you make. The main menu has three items that allow you to save, load, and reset display settings.

Saving Display Settings

Save Display Settings saves the current configuration of SimMechanics visualization settings. The settings are stored in a MAT-file. By default, this

MAT-file is placed in your current MATLAB directory. (To see your current directory, check the Current Directory browser or Current Directory field on the MATLAB desktop, or enter pwd at the command line.) If the name of your model is modelname.mdl, the default settings file is modelname. mat. When you save the settings, the Save Display Settings browser allows you to change the directory and name of the file. You can save multiple display settings MAT-files under different names. Using an existing MAT-file name overwrites the existing MAT-file.

The name of the last saved MAT-file is stored in the Simulink MDL-file itself. You must save your MDL-file in order to save this name.

If you do not choose to store your settings before you close SimMechanics visualization, your settings are not saved, and the MDL-file does not store a name for a MAT-file.

Reopening a Model Visualization

If the MDL-file lacks a name of a display settings MAT-file to load, SimMechanics visualization reverts to the default settings upon restarting.

If you do save a MAT-file of display settings, SimMechanics automatically loads the last saved MAT-file of display settings when you restart SimMechanics visualization after closing your visualization window or the entire MDL-file.

Reloading Display Settings Manually

If you want to load a different settings MAT-file, select Load Display Settings and choose a file in the Load Display Settings browser.

Resetting Display Settings to Default

If at any time you want to revert to the default display settings documented in this section, select Restore Default Settings.

Controlling Machine Displays in SimMechanics

You can change how machines look in the SimMechanics visualization window. This section explains how to control the machine display:

- "Highlighting Bodies and Body Blocks"
- "Changing Machine Display Symbols" on page 6-18
- "Changing Perspective and Window Size" on page 6-21

Highlighting Bodies and Body Blocks

Clicking a body or body coordinate system (CS) in the SimMechanics visualization window causes the following:

- The rendered body surface or CS triad changes color to yellow.
- The visualization window displays the associated Body block or Body CS name and its path on the line just above the machine display.
- The model window comes back to focus with the associated Body block highlighted in red.

To unhighlight, click anywhere in the white area of the machine display. You cannot highlight a body while the simulation is running.

You can enable or disable the highlighting of model Body blocks from the SimMechanics menu item Enable Model Highlighting. The default is enabled. Whether model highlighting is enabled or disabled, clicking a body in the visualization window always highlights the body in yellow. If you disable model highlighting, the associated Body block is not highlighted when you click the rendered body.

The mech_four_bar model from the Demos library is shown with Bar2 (the middle bar) highlighted.

SimMechanics Visualization Window with Highlighted Body and Body Block

Changing Machine Display Symbols

The visualization window displays various symbols to represent the machine. (See "Accessing the Special SimMechanics Features" on page 6-13.) You can enable or disable these symbols from the Machine Display submenu. Some options depend on which body rendering you choose, equivalent ellipsoids or convex hulls (see "Rendering Body Shapes in SimMechanics" on page 6-5).

Changing Machine Display Symbols

The Machine Display submenu has two groups of active items. You can disable or reenable any one or more of these by selecting the items. When an item is disabled, the corresponding symbols immediately disappear from the machine display in the window. When an item is reenabled, the corresponding symbols immediately reappear.

The first group allows you choose whether to display machine bodies as convex hulls, equivalent ellipsoids, or both. By default, the convex hull rendering is enabled, while the equivalent ellipsoids are disabled.

Convex Hulls Display convex hull for each body
 Equivalent Ellipsoids
 Display equivalent ellipsoid for each body

The second group allows you to turn body-related symbols on or off. Display of all three is enabled by default.

Body Surfaces Display convex hull or ellipsoid surfaces
 Centers of Gravity (CGs)
 Display center of gravity symbols
 Coordinate Systems (CSs)
 Display coordinate system triads

You can try displaying your machine with different combinations of symbols turned on or off. The Stewart platform of the mech_stewart_trajectory demo illustrates the possibilities.

- If body surfaces are turned off, convex hulls are rendered by red open wire frame figures. If the body surfaces are turned on, convex hull surfaces are rendered with red solid patches filling in the wire frame.

Convex Hulls Without and With Body Surfaces (Stewart Platform)

- If body surfaces are turned off, ellipsoids are rendered by red open wire frame figures. If the body surfaces are turned on, the ellipsoid wire frame is filled in by red surface patches.

Equivalent Ellipsoids Without and With Body Surfaces (Stewart Platform)

- If both convex hulls and ellipsoids are turned on, the machine display is a superposition of the two renderings.
- If you turn off both body shapes, bodies are outlined by their centers of gravity (CGs) and body coordinate systems (CSs).

Bodies Outlined by CGs and Body CSs (Stewart Platform)

Changing Perspective and Window Size

You can change your perspective view of the machine and the size of the visualization window with the Viewpoint submenu. Selecting a viewpoint immediately changes your view in the window.

Setting a Perspective Automatically

The available automatic perspectives are X-Y Plane, Y-Z Plane, X-Z Plane, and the trimetric 3-D (view([1-1 1])). The coordinate axes in SimMechanics are

```
+x (rightward)
+y (upward)
+z (out of the screen)
```

A planar view projects the machine onto the selected plane. The trimetric view displays the machine from the viewpoint along the axis $(1,-1,1)$.

Setting a Perspective Manually

You can find any perspective you want manually with the features of the Figure Toolbar and the Camera Toolbar.

To manually rotate the view,
1 Activate Rotate 3D from the Figure Toolbar or the Tools menu.
2 Click and hold your mouse anywhere in the display area, then roll the mouse to roll the viewpoint. Release your mouse to stop the roll.

To disable the 3-D roll, deactivate the menu item or button.
You can change the visualization window perspective in a more comprehensive way with the camera controls. Find these controls in the Tools menu or on the Camera Toolbar. With these controls, you can change the viewpoint angle, display projection, and scene lighting. You can also navigate through the machine display.

Note The Figure Toolbar and Camera Toolbar features are standard MATLAB features fully described in the MATLAB Graphics documentation.

Changing the Window and Axis Size

Fit Machine to View immediately resizes the visualization window and the machine to fit together. It does not change the display perspective.

Enable Automatic Axis Resize forces SimMechanics to resize the axes and window to fit the machine motion during an animation. If this option is disabled, the machine's bodies can move out of view of the display. The default is enabled.

Animating SimMechanics Simulations

This section shows you how, from the SimMechanics visualization window, you can control certain aspects of machine simulation and animation. The SimMechanics controls also allow you to record machine animations.

- "Controlling the Simulation from the Window"
- "Changing the Machine Display Refresh Rate"
- "Recording and Playing Animations" on page 6-25

Controlling the Simulation from the Window

Certain Simulink model features are mapped into the SimMechanics menu so you can use them from the SimMechanics visualization window. You find these features in the Simulation submenu.

You can start a model (if it is not running) and stop a model (if it is running) from this submenu by selecting Start or Stop. The keyboard shortcut Crtl+T initiates the same actions, if the SimMechanics visualization window or the Simulink model window is in focus.

You can update your Simulink model diagram by selecting Update Diagram or by entering $\mathbf{C t r l + D}$ at the keyboard with the visualization window or Simulink model window in focus.

You can also enable or disable the display of the simulation running time by selecting Display Simulation Time in this submenu. The default is disabled. The simulation running time is shown in the left corner of the status bar at the bottom of the SimMechanics window as Simulation Time: ... sec.

Changing the Machine Display Refresh Rate

By default, the machine display is updated at every major time step during simulation. You can change this refresh rate by reconfiguring the Simulink output options. Taking more sample points makes the animation smoother. Using fewer sample points leads to a more disjointed animation, but a faster simulation and a smaller recorded animation file (see "Recording and Playing Animations" on page 6-25).

Open Configuration Parameters in the Simulation menu of your model window. On the Data Import/Export node, in the Save options area, change the Output options pull-down menu entry to Produce specified output
only. You must now use the Output times field on the right to specify explicitly how often Simulink should capture the simulation output. In this field, enter a vector of sample times. The sample time range must be the same as or lie within the Start time and Stop time range of the Simulation time area in the Solver node of Configuration Parameters.

If you want a uniform output sampling, use the linspace command to specify the time range and number of sample points:

```
linspace(start-time, end-time, number-of-points)
```

See the Simulink documentation on the Configuration Parameters dialog for more about output options.

Example: Changing the Refresh Sampling Rate

To sample 200 points from zero to 10 seconds,
1 Open Configuration Parameters from the Simulation menu.
2 Locate Output options in the Data Import/Export node. Change the pull-down menu to Produce specified output only.

3 Enter linspace (0,10,200) in the Output times field. Click Apply or OK.

Speeding Up the Animation

As SimMechanics animates your machine's motion, it moves the bodies, whether rendered as convex hulls or as equivalent ellipsoids, and refreshes the body center of gravity (CG) and coordinate system (CS) triad symbols.

You can speed up the animation if you turn off one or more of these symbols:

- Body CGs
- Body CSs
- Ellipsoids or Convex Hulls
- Body Surfaces

The preceding section, "Changing Machine Display Symbols" on page 6-18, explains the full set of display controls and how to enable and disable them. Leave at least one type of symbol enabled in order to see the bodies' motions.

Recording and Playing Animations

The SimMechanics visualization window allows you to record animations of your machine simulations. The animations are stored in Audio Video Interleave (AVI) format. You control animation recording through the Animation submenu.

To activate animation recording, enable Store in AVI File. The default is disabled. By default, recorded AVI files are placed in your current MATLAB directory. (To see your current directory, check the Current Directory browser or Current Directory field on the MATLAB desktop, or enter pwd at the command line.) If the name of your Simulink model file is modelname.mdl, the name of the recorded AVI file is modelname. avi. When you enable animation recording, this name appears in the right corner of the status bar at the bottom of the visualization window as Animation File: model-name.avi.

SimMechanics first records a MATLAB movie by capturing the machine display at every major simulation or output time step. Then, in the termination phase of your simulation, it converts this movie to AVI format and stores it in the AVI file. A small AVI Conversion window opens to indicate that conversion and storage are complete and to display the path of the AVI file. Click OK to close this prompt.

Caution SimMechanics overwrites any existing file with the same name as the AVI file in the same directory. The AVI file write fails if a file of the same name that is locked by another application exists in the same directory.

Changing the Name and Storage Directory of the Animation File

If you want to change the directory in which your AVI files are stored, you must implement the change before beginning the simulation. Change the AVI storage directory by selecting Choose AVI File Location. The AVI File Location browser appears. Change to the directory you want the AVI file stored in, then click Save.

In the same AVI File Location browser, you can also change the name of the stored AVI file before clicking Save.

Compressing the Animation File

You can reduce the size of your AVI file by compressing it. Select Compress AVI File to enable this feature. The default is enabled.

Note AVI compression is available only on the Windows platform. SimMechanics uses the Indeo 5 compression algorithm, and your AVI player must be configured to decompress it.

Playing Back the Animation File

You need an AVI-compatible video player to view the recorded file. You can use the internal MATLAB movie viewer or an external video player.

If you open an AVI file from MATLAB, an Import Wizard prompts you to load the AVI stream. Click the Play Movie button. The MATLAB Movie Viewer opens and runs the animation.

Custom Visualization with Virtual Reality

You can bypass the standard SimMechanics visualization and create a machine animation in a virtual world of your own design. This gives you the power to animate a more realistic visualization of your machine. You create a virtual world, populate it with bodies represented as virtual objects using the Virtual Reality Modeling Language (VRML), then interface the virtual world with your SimMechanics model. Creating your own virtual animation requires a new or existing virtual world for your model and an interface between them.

This section explains how to use a separately created virtual world with SimMechanics:

- "Creating Virtual Worlds for SimMechanics Models"
- "Interfacing SimMechanics with Virtual Worlds" on page 6-31

Virtual Reality Visualization This section assumes that Virtual Reality Toolbox is installed on your system and that you are familiar with it and with creating virtual worlds. Refer to the Virtual Reality Toolbox documentation for full details on installing and using this toolbox.

We recommend you allocate generous central processor power, graphics card speed, and memory for the virtual reality feature, especially for animation.

Creating Virtual Worlds for SimMechanics Models

The Virtual Reality Toolbox User's Guide and VRML books such as Marrin and Campbell [8] explain how to create virtual objects and assemble them into virtual worlds. The best way to become comfortable moving around in a virtual world is to practice with a variety of movement modes and viewpoints. This section highlights the special requirements to make a virtual world usable as a visualization for a SimMechanics model.

Editing Virtual Worlds and VRML Files

As you create a virtual world populated by virtual bodies, you must create each component body, then plan and implement the geometry of the machine's initial state. Use a VRML authoring tool that can read VRML as a native format to create and edit virtual reality .wrl files. The Virtual Reality Toolbox
includes a VRML authoring tool called V-Realm Builder ${ }^{\circledR}$. If you are familiar with raw VRML source code, you can use a plain text editor or the MATLAB editor to edit the files.

Representing Bodies as Virtual Objects

You represent each body by a virtual object encoded in a .wrl file.You also create a master .wrl file to represent the virtual world that refers to body .wrl files, placing and orienting these bodies in the larger scene. You can define a body's position and orientation with respect to,

- The overall virtual world, corresponding to the SimMechanics coordinate system World
- Another body in the machine, corresponding to Body coordinate systems in SimMechanics

You can nest body references to other bodies in VRML hierarchies, but you must define at least one body's position and orientation with respect to the overall virtual world. Place and orient the bodies in their initial states, corresponding with the initial state of the SimMechanics simulation.

Each body's .wrl file contains a hierarchical tree starting with the Transform node. Among Transform's fields must be translation and rotation fields to specify the body's position and orientation in space. If a body is nested below another body, its position and orientation are defined with respect to the next body up the hierarchy.

Creating your own virtual world gives you great flexibility in representing your machine:

- You can render bodies in as much or as little detail as you want, with shapes, colors, textures, etc., of your own choosing.
- You can include or omit bodies that you do not animate.
- You can create a computer-aided design (CAD) representation of your machine and export it into VRML files.
- If you only translate a body, you can omit the rotation field from its Transform node.
- If you only rotate a body, you can omit the translation field from its Transform node.

Example: Viewing Custom External VRML Files for the Conveyor Loader

The demo model mech_conveyor_vr is a modified version of the original conveyor model mech_conveyor and comes with external VRML files containing static renderings of the machine parts in their initial positions. This example uses the V-Realm Builder editor to view the files.

1 In the matlabroot \backslash toolbox \backslash physmod \backslash mech \backslash mechdemos \backslash directory, open these external VRML files with V-Realm Builder:
base.wrl, convmech.wrl, link1.wrl, link2.wrl, link3.wrl, link4.wrl, pusher.wrl

2 With the conveyor. wrl world in focus, click the Test Mode button 到 in the V-Realm Builder toolbar and view the complete machine in the Main view. Right-click in this window to configure the navigation. If the colors seem washed out, toggle off the headlight.

These conveyor parts are more realistic than the equivalent ellipsoids or convex hulls available in SimMechanics visualization:

3 On the left side of your VRML editor window, examine the node tree of convmech.wrl that refers to the six VRML files representing each component body:

The hierarchy of body position and orientation references is flat in this model. Each body is separately referenced to the top level of the hierarchy, New World.

4 Expand one of the nodes. Each body node has, among others, rotation and translation fields:

The exception is the base. Being grounded and immobile, it has neither a translation nor a rotation field.

Interfacing SimMechanics with Virtual Worlds

To animate a body, you need to measure its motion in your SimMechanics simulation and export that information to the virtual world. This requires connecting Body Sensor blocks to the Bodies you want to animate in your model, then creating an interface that animates the virtual bodies with the body sensor motion signals. "Example: Interfacing the Conveyor Loader Model and Virtual World" on page 6-33 applies these steps to the mech_conveyor_vr demo.

Adding and Configuring Body Sensors

Refer to "Sensing Body Motions" on page 4-63 for general information on how to use Body Sensors. Connect the Body Sensors to Body coordinate systems (CSs) on the bodies whose motions you want to animate. The Body block reference discusses how to create and configure Body CSs. You need to take these special steps to export the signals of a body sensor to your virtual world:

1 Make sure the Body Sensor's Body CS reference origin and orientation follow the body's defining VRML hierarchy.

Example: You define a new Body CS on a body to connect the Body Sensor. If you defined the VRML body's position with respect to the center of gravity (CG) of a second, neighboring body in your VRML files, you should set the Translated from origin of field of the new Body CS to the origin of the CG CS of the second body.

2 In the Body Sensor dialog, select the [$\mathbf{x ;} \mathbf{y ;} \mathbf{z}]$ Position check box if you want to animate the body's translational motion.

Select the [$\mathbf{3} \mathbf{x} 3$] Rotation matrix check box if you want to animate the body's rotational motion.

3 Choose the coordinate system in which the body motions are measured in the With respect to coordinate system pull-down menu. You can pick Absolute (World) or Local (Body CS). This coordinate system should be the same as the coordinate system used to define the body's position and orientation in the VRML files.

A Simulink output port > appears on the block for each of the motion signals. The translational signal is a 3 -vector of spatial coordinates, (x, y, z). The rotational signal is a 9 -vector, column-wise representation of the 3 -by- 3 orthogonal rotation matrix $R,\left(R_{11}, R_{21}, R_{31}, R_{12}, \ldots\right)$.

Animating the Virtual World Bodies

Animating the virtual bodies requires interfacing the body sensor signals in the SimMechanics model with the VRML translation and/or rotation fields in the .wrl files. You accomplish this with the VR Sink block, which you can find in the Virtual Reality Toolbox block library. Enter
vrlib
at the command line. Drag a copy of the VR Sink block into your model.
Open the VR Sink dialog box. (The figure "Conveyor Loader Model: VR Sink Dialog Box" on page 6-36 displays an example of the dialog.) In the Source file field in the World properties area, enter the name of the VRML file that represents your model's virtual world. This is the file that refers to the other
.wrl files representing the component bodies of your machine. If the virtual world VRML file is not in the same directory as your model, enter the file's path relative to the model. Click Apply.

In the VRML tree window, the node list of the virtual world . wrl file appears. Expand the tree of each component body in the list to view that body's check box list. Select the rotation and/or translation check boxes as needed for each body. A Simulink input port $>$ appears on the block icon for each of these selected check boxes. The ports are labeled node.field. The node is the name for the body. The field is named either rotation or translation.

Converting Body Sensor Signals into VRML Format

You are now ready to connect the Body Sensor output signals to the VR Sink block. But you might need to modify those signals for valid use in VRML.

- You can connect the translational motion signal line directly from the output port of the Body Sensor to the node. translation input port on the VR Sink. The VRML node tree directly accepts translation motion as a 3 -vector signal of rectangular coordinates (x, y, z).
Make sure that the translational motion signal refers to the same coordinate system used to define the body's position in the VRML files.
- You cannot directly connect the rotational motion signal line to the VR Sink. The Body Sensor output represents orientation with a 3-by-3 rotation matrix R, while VRML accepts orientation represented as the axis-angle 4 -vector form $[\mathbf{n} \theta]$, where $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ is a 3 -vector representing the rotation axis and θ is the rotation angle.
Open the SimMechanics Utilities library. For each rotational motion signal, drag a RotationMatrix2VR block into your model. Connect the rotation signal from the Body Sensor block to the RotationMatrix2VR block. Then connect the latter block to the corresponding node. rotation input port on VR Sink for that body. This block converts the 3-by-3 R matrix signal into the 4 -vector VRML form.

Close the VR Sink block dialog. Your SimMechanics model now animates the virtual world.

Example: Interfacing the Conveyor Loader Model and Virtual World

In the mech_conveyor_vr demo model, open the Body Sensor1 block. The block measures the translational and rotational motion of Link3 in the conveyor:

The Body Sensor1 block has two Simulink output signals.
The other Body Sensor blocks are similar, except for Body Sensor2, which measures only the translational motion of the pusher. All the Body Sensors measure body motions with respect to World, the frame in which the conveyor base is at rest. Each motion signal represents the body's displacement relative to its initial position.
The mech_conveyor_vr model contains a Virtual Reality Toolbox interface to the model's custom VRML files.

1 Trace each body sensor signal through the model. The signals are routed through pairs of Simulink Goto and From blocks.

2 Open the VR Sink block. The Source file is convmech.wrl, the master file for this virtual world. The VRML tree on the right reproduces the node tree visible in the VRML editor for convmech.wrl.

Conveyor Loader Model: VR Sink Dialog Box

3 Expand and scroll down the VRML trees. The trees for Link1, Link2, Link3, Link4, and Pusher list the field inputs for accepting motion signals.

- The Link component bodies require both translational and rotational motions. All the Links have actively selected check boxes for their rotation and translation field inputs.
- The Pusher body requires only translational motion. Only the translation field check box is selected for the Pusher.
Each of the nine Simulink input ports on the VR Sink block is named node. field. The Base of the conveyor does not move, so its node has no motion input fields.

4 In the VR Sink dialog, click View in the World properties / Source file area.

Your Virtual Reality Toolbox viewer opens, displaying the conveyor machine scene. The scene is identical to that visible in the VRML editor (see "Example: Viewing Custom External VRML Files for the Conveyor Loader" on page 6-29).

5 Close all the dialog boxes by clicking OK, leaving the viewer open.
6 Click the Start button in the model window.
As in the original mech_conveyor demo, starting the model opens the Reference Position slider bar that you can move from side to side. As you do so, watch the pusher in the viewer move in parallel.

Modeling with Computer-Aided Design

Using SimMechanics with computer-aided design (CAD) extends your mechanical modeling and simulation capabilities, allowing you to create block diagram models from CAD assemblies.

Introducing CAD Translation (p. 7-2)

Exporting CAD Assemblies into Physical Modeling XML (p. 7-6)
Generating Models from Physical Modeling XML (p. 7-14)

Exporting a Part (p. 7-20)
Designing and Exporting Mates (p. 7-22)

Creating a CAD-Based Robot Arm Model (p. 7-34)
Modeling a Stewart Platform (p. 7-41)

Overview of installing and using the SimMechanics CAD translator to export assemblies and generate models from them

Translating computer-aided design assemblies into the Physical Modeling XML format
Generating Body-Joint SimMechanics models from the Physical Modeling XML format and manually completing the models with other blocks

Modeling and translating a part into a body
Modeling and translating parts with degrees of freedom into bodies and joints
Generating and completing a full SimMechanics model from an exported robot arm assembly

Constructing and translating a six-degree-of-freedom Stewart platform assembly

Introducing CAD Translation

Computer-aided design (CAD) tools allow you to model machines geometrically as assemblies. Although this approach is excellent for geometric modeling, it is difficult to incorporate controllers and perform dynamic simulations. Simulink and SimMechanics use a block diagram approach to model control systems around mechanical devices and simulate their dynamics, but without full geometric information.

This section explains how to combine the power of CAD and SimMechanics with a CAD-to-SimMechanics translator. The translator transforms geometric CAD assemblies into Simulink block diagram models. The intermediary between a CAD assembly and its SimMechanics model is an XML file in a special Physical Modeling format.

Before starting to use CAD with SimMechanics, you must first
1 Install your CAD platform.
2 Install the SimMechanics CAD translator appropriate to your CAD platform, using the CAD translator installer. See "Installing the SimMechanics CAD Translator" on page 7-3.

Using the translator with a CAD assembly involves two steps:
1 You export the assembly from the CAD platform into a Physical Modeling XML file that you can later use with SimMechanics. This step requires the CAD platform and the appropriate translator, but not MATLAB. See "Exporting CAD Assemblies into Physical Modeling XML" on page 7-6.

[^2]2 You then convert the Physical Modeling XML file into a SimMechanics model in Simulink. This step requires the XML file and SimMechanics, but not the CAD platform or the translator. See "Generating Models from Physical Modeling XML" on page 7-14.

Importing a Physical Modeling XML File into SimMechanics

Installing the SimMechanics CAD Translator

You do not need any MATLAB component to install the SimMechanics CAD translator, but the target CAD platform needs to be installed.

If you have more than one installation of a particular CAD platform, you must install a translator for each CAD installation separately.

Installing the CAD Translator on Your System

To install the translator,
1 Obtain the self-extracting translator installer specific to your CAD platform and operating system by either downloading it or locating it in your SimMechanics installation under the directory
toolbox/physmod/pmimport/standalone/

CAD Platform	Installer	Uninstaller
SolidWorks${ }^{\circledR}$	Install_SimMechanics_Translat or_for_SolidWorks.exe	Uninstall SimMechanics (Windows only) Translator for SolidWorks

2 Run the installer executable. A dialog appears. Select the Setup option.
A system command-line window opens and displays the installer's search for your CAD platform.

3 While the CAD platform search proceeds, you can either

- Wait for the search to find an installed CAD platform executable
- Press the spacebar to stop the search and then manually enter a full or partial path to your CAD platform executable

4 Once the installer locates your CAD installation directory, it prompts you to confirm that the translator is to be installed there. If you accept this choice, the installation proceeds in that directory.

If you refuse a location, the installer returns to ask you to enter another full or partial path and continues its search for a CAD installation in the new location.

5 After the translator files are copied into the proper directory, the installer prompts you to exit and open a README file. Once you close this file, the installation is complete.
The SimMechanics CAD translator files are installed, relative to the top directory of your CAD platform, in /Applications/TheMathWorks/ SimMechanics/. The subdirectory /help/ contains special help files for your particular CAD platform, while the /examples/ subdirectory provides preconstructed assemblies to learn with.

Linking the CAD Translator to Your CAD Platform

To configure your CAD platform to work with the translator,
1 Start your CAD platform and open the add-ins or API manager menu. If you are unfamiliar with this menu, locate these settings in your CAD menu bar and documentation.

2 Check the box or entry corresponding to SimMechanics.
After you open a CAD assembly file, a SimMechanics menu appears in the CAD platform's menu bar. The SimMechanics CAD translator is now ready to work with your CAD platform.

Uninstalling the SimMechanics CAD Translator

You can remove the CAD translator link from your CAD platform without uninstalling it. You can also uninstall the translator completely. The uninstaller is located in the /Applications/ directory, relative to the top of your CAD platform's installation.

Unlinking the CAD Translator from Your CAD Platform
To unlink the CAD translator from your CAD platform,
1 Locate your CAD platform's add-ins or API manager menu.
2 Clear the entry or box corresponding to SimMechanics in this menu.
3 Close your CAD program.
When you reopen the CAD program, the CAD translator link no longer appears, but the CAD translator remains installed on your system.

Uninstalling the CAD Translator from Your System

To uninstall, you must first unlink the CAD translator from your CAD platform.

Then, in the /Applications/ directory, relative to the top of your CAD platform's installation, locate and double-click the uninstaller icon for the SimMechanics translator. Allow the uninstall to proceed until completion.

If you have a particular CAD platform installed multiple times on your system, this uninstall procedure removes the SimMechanics translators from all installations of this particular CAD platform.

The uninstallation removes all translator-associated files except for the uninstaller itself, which is deleted the next time you reboot your system.

Exporting CAD Assemblies into Physical Modeling XML

The SimMechanics computer-aided design (CAD) translator extends the functionality of your CAD software platform. The translator converts an existing CAD assembly into a Physical Modeling XML file that is portable and independent of SimMechanics. From this XML file, you can generate a SimMechanics model, as discussed in "Generating Models from Physical Modeling XML" on page 7-14.

Note You do not need MATLAB or any MATLAB component to use the SimMechanics CAD translator, but you need to have the target CAD platform installed.

When you export from your CAD platform, you must export a complete assembly into XML, not just a part.

This section explains how to export CAD assemblies into the Physical Modeling XML format.

- "Building a CAD Assembly for SimMechanics" explains the requirements to generate a working SimMechanics model from your CAD assembly.
- "Translating CAD Assemblies into XML" on page 7-10 walks you through the steps to export the XML file representing the CAD assembly.
- "Getting Help in the CAD Translator Window" on page 7-12 shows you how to get online help while you are working with the CAD translator.
- "Troubleshooting Assembly Export Problems" on page 7-13 examines some of the problems you might encounter when you export a CAD assembly into a Physical Modeling XML representation.

Building a CAD Assembly for SimMechanics

SimMechanics is a dynamic environment for simulating body motions. The CAD translator creates a Physical Modeling XML file that represents the assembly's parts as bodies and maps the assembly's mates into a corresponding
set of joints. You need to specify enough information in your CAD assembly for SimMechanics to construct a dynamically meaningful model from the XML file.

CAD Assembly Component	Corresponding SimMechanics Blocks
Part	Body
Mates	Joints
Fundamental Root	Ground - Root Weld - Root Body
Subassembly	Subsystem
Subassembly Root: [[trunk]] - mate(s) - subassembly	[[Root Body - Root Weld - Fixed Body]] - Joint - subsystem
Fixed Part (in a subassembly)	Root Body - Weld - Body

Roots, Subassemblies, and Hierarchies

Every CAD assembly has a single fundamental root, a fixed point that does not move. The positions and orientations of all parts refer directly or indirectly to this fundamental root. The CAD translator converts the fundamental root into a unique Ground - Weld - Body combination in SimMechanics.

A root body is a zero-mass, zero-inertia body used in the generated SimMechanics model to represent a CAD root. A root body is always welded to ground, so that its zero mass and zero inertia do not affect the model's dynamics.

You can isolate a collection of CAD components (parts and mates) into a subassembly. The CAD translator converts subassemblies into subsystems in SimMechanics.

In general, you can make a subassembly either rigid or flexible.

- A rigid subassembly has distinct parts constrained to move as a single body.
- A flexible subassembly has distinct parts that can move relative to one another according to their mates.

See also "Configuring Subassemblies" on page 7-10.
The main assembly is like the trunk of a tree, and its subassemblies are like the branches of the tree. There can be subassemblies of subassemblies, and so
on. This tree is the assembly's hierarchy. Each CAD subassembly has its own subassembly root, which attaches it to the rest of the assembly through one or more mates.

A fixed part of a CAD subassembly is a part that is welded to the subassembly root. It cannot move relative to the subassembly root.
See "Creating a CAD-Based Robot Arm Model" on page 7-34 for an example.

Optimizing Your Assembly with Subassemblies

Use subassemblies to organize your assembly hierarchically. This will simplify your subsequent SimMechanics model by grouping blocks into corresponding subsystems. Follow these guidelines to ensure that your CAD assembly is translated into a functioning SimMechanics model.

- You must have at least one fixed part inside each subassembly. (See "Roots, Subassemblies, and Hierarchies" on page 7-7 for more on fixed parts.)
- Put as many welded components as you can inside rigid subassemblies.

If your assembly has a group of parts that do not move relative to one another, put them inside a subassembly and make it rigid. The SimMechanics translator treats the entire subassembly as a single part, thereby eliminating unnecessary body and joint blocks from your subsequent SimMechanics model.

- Avoid creating mates between a subassembly part and geometrical abstractions such as the $x-y, y-z$, and $x-z$ planes of the subassembly. Instead, create mates between the part and a fixed part in the subassembly.

Specifying Mass Properties of Assembly Parts

The CAD assembly's parts need to have masses and inertia tensors. When you generate the SimMechanics model, this mass property information is used to specify the properties of the SimMechanics Body block corresponding to each assembly part.

Usually, your CAD platform computes masses and inertia values from the mass density and geometry of the assembly parts. Otherwise, you must specify the mass and inertia tensor with respect to the part's center of gravity. The SimMechanics CAD translator computes the center of gravity of each part automatically.

See "Exporting a Part" on page 7-20 for an example.

Specifying Mate Geometries

Your CAD assembly's mates restrict how parts can move with respect to each other. Without any connecting mates, a pair of CAD parts can move with six unrestricted degrees of freedom (DoFs) relative to one another. Mates between pairs of parts reduce the six to fewer DoFs. In SimMechanics, joints express DoFs between bodies, because bodies by themselves carry no DoFs. You must specify the mate geometry in the CAD assembly consistently and in enough detail for SimMechanics to reconstruct the assembly's DoFs as joints.

The relationship between mates and joints is not, in general, a simple mapping. Some SimMechanics joints have only one DoF, while others represent more than one DoF. The translator often combines multiple DoFs into one joint.

Each joint is connected to each of two bodies at a body coordinate system (CS). The mate geometry determines the joints into which the translator transforms the mates and controls the position and orientation of the body CSs. Each of these body CSs has an origin and axis triad fixed relative to its body. The translator creates body CSs on the bodies as necessary for connecting joints.

See "Creating a CAD-Based Robot Arm Model" on page 7-34 for an example of configuring mates.

Avoiding Redundant Mates

Keep mates simple and few enough to avoid creating unnecessary joints in your SimMechanics model.

For example, consider three parts, P1, P2, and P3, in an assembly. Suppose P1 and P2 are mated so that there is no movement possible between them. When you attach P3, you could put, for example, one mate between P3 and P1 and the other between P3 and P2. But this leads to a redundant joint in the SimMechanics model, making it harder to understand and debug than if you created only one mate. In this example, it is better to create a mate just between P3 and P2, since P2 cannot move with respect to P1 anyway.

Specifying Initial Conditions of Motion

The initial condition of motion for the whole assembly is just its geometrical configuration. All initial velocities are assumed to be zero. SimMechanics begins dynamic simulation of the corresponding model in this state, unless you change the model after generating it. See "Setting the Model's Initial Conditions" on page 7-17 for more details.

Translating CAD Assemblies into XML

To translate the CAD assembly into a form that SimMechanics can use, you must check and configure the translator settings, then save the assembly through the translator into the special Physical Modeling XML format.

Opening the SimMechanics Translator Settings

In your CAD menu bar, select SimMechanics, then Settings. The Settings area appears in your CAD window.
To apply your settings, check the green check mark at the top. To cancel your settings session at any time, click the red \mathbf{X} at the top.

SimMechanics Translator Settings Area

Configuring Subassemblies

Here you choose how the CAD translator treats subassemblies. You can simplify the translated SimMechanics model if you treat subassemblies as
rigid, because each is translated as a single body. To simulate the motion of individual subassembly parts, treat translated subassemblies as flexible.

- Choose Component properties if you want the translator to treat each subassembly according to its individual rigid or flexible setting in the CAD platform.
- Choose Flexible settings if you want the translator to treat all subassemblies, regardless of their individual settings, as flexible. Selecting this option does not change the CAD subassembly settings in the CAD assembly file.

The default is Component properties.

Configuring Tolerances

You can configure one or more of the translation tolerances. Geometrical and numerical differences smaller than the tolerances are treated as zero. The entries implicitly have the same units selected in your CAD platform settings.

- Linear Tolerance specifies the smallest significant difference in length.
- Angular Tolerance specifies the smallest significant difference in angle.
- Relative Roundoff specifies the smallest significant numerical difference.

Applying the Settings and Creating the XML File

To translate the assembly into a Physical Modeling XML file,
1 After entering your SimMechanics settings, click the green check mark at the top to confirm them. The CAD hierarchy window returns.

2 If you changed the assembly or any subassemblies, you need to rebuild the assembly and resave it in its native format before exporting it to XML.

3 With your assembly open, go to File, then Save As. The Save As dialog opens. For Save as type, select SimMechanics (.xml). The default name is
the same as that of the CAD assembly file. You can change the XML filename and directory at this point.

4 Click OK.

The assembly is saved in the new form as an XML file.

Note To use the exported XML file to automatically generate a SimMechanics model, you need to move or copy the file into a MATLAB working directory. See "Generating Models from Physical Modeling XML" on page 7-14.

Getting Help in the CAD Translator Window

The CAD translator installation for your platform includes special online help that is independent of the MATLAB Help system. These help files are located, relative to the top of your CAD platform directory, in

Applications/TheMathWorks/SimMechanics/help/

Getting HTML Help

To obtain online CAD translator help in your CAD platform, follow either step:

- In the CAD menu bar, select SimMechanics, then Help.
- In the Settings window, click the ? (question mark) symbol.

Your default Web browser opens and displays an HTML help file specific to your CAD platform.

Getting PDF Help

You can also access a short CAD translator guide in PDF format by looking in your CAD platform's special SimMechanics directory. The PDF guide contains the CAD-related sections of this user's guide.

Troubleshooting Assembly Export Problems

The CAD translator can encounter difficulties when it attempts to represent your assembly in the XML file as SimMechanics bodies and joints.

Mate Translation Errors

Mate translation errors occur when you specify a mate in your CAD assembly that is not supported for export. The mates supported for a particular CAD platform are listed in that platform's special HTML help page (see "Getting HTML Help" preceding).

If the translator fails to map one or more mates into joints, it issues one or more error dialogs and logs the errors into a special text file. The error dialog indicates the name of this error log file, which is located in the same directory as the exported Physical Modeling XML file. The XML file is generated regardless of mate translation errors.

The XML file itself contains the same errors, each paired with the corresponding failed joint. The mates that failed to translate properly are converted instead into welds. These errors reappear as MATLAB commandline warnings if you generate a SimMechanics model from the XML file.

Subassembly Configuration Errors

Be sure that you configure your flexible subassemblies' positions and orientations to be consistent with the main assembly's configuration before your export the assembly.

Generating Models from Physical Modeling XML

A CAD assembly can specify part and mate information sufficient to generate a SimMechanics model consisting of Body and Joint blocks and representing the assembly. Once you have exported a CAD assembly into a Physical Modeling XML file, you can generate a SimMechanics block diagram model with this file. Although the generated model will run, you often need to manually simplify and complete it in order to fully represent the original dynamic system.

- "Generating Body-Joint CAD-Based Models" shows how to import the XML file into SimMechanics using the command import_physmod, which constructs the model.
- "Special Features of CAD-Based Models" on page 7-15 explores the special characteristics of an automatically generated CAD-based model.
- "Editing and Completing CAD-Based Models" on page 7-16 explains when and how to edit your model and expand it with additional blocks, such as Constraints, Drivers, Actuators, and Sensors.
- "Troubleshooting CAD-Based Models" on page 7-18 points out major model-generation and simulation errors and problems that can arise from CAD-based models, and techniques for solving them.

Note This section assumes that you have SimMechanics installed locally or remotely, and that you have the XML file representing a CAD assembly in your current MATLAB directory.

To generate the SimMechanics model, you do not need the CAD platform from which the XML file was exported or the SimMechanics CAD translator.

Generating Body-Joint CAD-Based Models

Move or copy the Physical Modeling XML file you want to use into your MATLAB working directory.

The import_physmod command creates a SimMechanics block diagram model from a Physical Modeling XML file. To start the model generation, enter

```
import_physmod('cad_assembly.xml')
```

at the command line. A progress bar appears:

The bar is updated as the model is imported.
A Simulink model window opens. The model is populated by Bodies and Joints corresponding to the assembly parts and mates saved in cad_assembly.xml, with the corresponding connections and hierarchy explained in "Exporting a Part" on page 7-20. The name of the generated model is the name of the original assembly file, regardless of the name chosen for the XML file.

If your model needs additional Joints, as well as Constraints, Drivers, Actuators, and Sensors, you must manually add these to the model from the SimMechanics block libraries and connect them. You also might want to manually simplify a model. Consult "Editing and Completing CAD-Based Models" on page 7-16 for more.

Changing the Appearance of a CAD-Based Model

You can change the appearance of your generated model by using optional import settings. See the import_physmod command reference for more details.
For example, entering

```
import_physmod('cad_assembly.xml','FontSize',18)
```

at the command line generates a model with a block label font size of 18 pixels.

Special Features of CAD-Based Models

Most of the properties of models that you generate from an XML file are the same as the default properties of all Simulink models. See the Simulink user's guide for general information on working with Simulink models.

Models generated from a CAD-based XML file do have certain special features:

- Exactly one Ground block and connected Machine Environment block
- Fundamental root, represented by Ground - Root Weld - Root Body
- Subassembly roots, represented by Root Body - Root Weld - Fixed Body
- Joints with degrees of freedom (DoFs), represented by Custom Joints, containing the correct joint primitives for the translational and rotational DoFs between any two bodies
- Joints without DoFs, represented by Welds

Joints that directly connect a subsystem's Body to the next higher level in the hierarchy appear in that next higher level, not within the subsystem. This means that the boundary between subassembly and main assembly in the CAD world is drawn differently from the boundary between subsystem and top-level system in SimMechanics. This difference does not change the degrees of freedom of the model. They are the same in a CAD assembly and in the SimMechanics model generated from the assembly.

Editing and Completing CAD-Based Models

The import_physmod command generates a model containing only Machine Environment, a Ground, Bodies, and Joints. A complete SimMechanics model typically contains other blocks, including Constraints, Drivers, Sensors, and Actuators (from the mechlib block library), as well as blocks from Simulink, such as Scopes.

Creating a complete SimMechanics model requires inserting and connecting these additional blocks in your generated model. Use the relevant sections of the "Modeling Mechanical Systems" chapter to learn how to use these blocks.

When you first generate a model from Physical Modeling XML, you might want to save this original CAD-based model before you create later versions by eliminating unnecessary blocks and adding new ones.

Deleting Unnecessary Blocks

The CAD mate-to-SimMechanics joint mapping creates unnecessary blocks in order to isolate all the degrees of freedom (DoFs) correctly. You can delete these unnecessary blocks to simplify your model without affecting its dynamics, as long as you reconnect the remaining blocks properly.

The unnecessary blocks consist of nonmoving zero-mass/zero-inertia Bodies and redundant Welds.

In particular, the fundamental root of a CAD assembly translates to a RootGround - RootWeld - RootPart combination, which is then connected to other Joint and Body blocks. The root body has zero mass and inertia, so you
can remove it and the RootWeld, then reconnect the rest of the model to the Ground.

Not all Welds are redundant. Some are needed to connect a Body that would otherwise be isolated to the rest of the machine.

Constraining and Driving Degrees of Freedom

Constraints reduce the number of independent degrees of freedom in a machine by preventing certain movements. Drivers affect DoFs, not by eliminating them completely, but by forcing their motions to follow an external time-dependent signal. A constrained or driven DoF is not free to respond to forces and torques independently.

These sections discuss how to add constraints and drivers to your model:

- "Modeling Constraints and Drivers" on page 4-35
- "Actuating a Driver" on page 4-53

Actuating Bodies and Joints with Motions and Forces

SimMechanics gives you the ability to actuate bodies and joints in your models with external forces and motions, and to set up internal forces between bodies. You can also vary the mass or inertia (or both) of a body in time. Consult these sections for more details.

- "Actuating a Body" on page 4-42
- "Varying a Body's Mass and Inertia Tensor" on page 4-45
- "Actuating a Joint" on page 4-47
- "Modeling Force Elements" on page 4-58

Setting the Model's Initial Conditions

When you import a CAD assembly into SimMechanics, the XML file determines the initial geometric configuration of the model's bodies. By default, the initial velocities of the bodies are zero.

If you want to change the initial positions and/or velocities of the bodies in your model to be different from the CAD-determined configuration, you need to add initial condition actuators, as discussed in "Specifying Initial Positions and Velocities" on page 4-53.

Sensing Forces and Motions

To detect the motions of bodies and joints and measure the forces acting on or through them, you can add sensors to your model. See "Modeling Sensors" on page 4-63.

Checking Model Validity

You can find general instructions and requirements for building valid SimMechanics models in "Modeling Machines" on page 4-2 and "Checking Model Validity" on page 4-68.

Troubleshooting CAD-Based Models

These are some problems that might arise in your generated SimMechanics model if your CAD assembly was not constructed or exported properly.

General Guidelines

- See "Building a CAD Assembly for SimMechanics" on page 7-6 for instructions on constructing a CAD assembly specifically for SimMechanics.
- See "Translating CAD Assemblies into XML" on page 7-10 for details about exporting a CAD assembly.

Troubleshooting Errors During Model Generation

Errors in the Physical Modeling XML file appear as warnings at the MATLAB command line during model generation.

These warnings arise from CAD mate translation errors encountered when the XML file was originally exported. Such errors occur when the CAD translator fails to map one or more CAD mates, which restrict the degrees of freedom between parts, into their corresponding SimMechanics joints. The CAD translator warns you at the export step if such errors occur.

The failed Joint appears in your generated model as a Weld. You can fix such errors in two ways:

- In the generated model, manually replace the Weld with the proper Joints.
- Return to the original CAD assembly, reconfigure the mates, and export it again.

Consult "Mate Translation Errors" on page 7-13 for more about export errors.

Troubleshooting Model Dynamics Errors

Certain problems with CAD-based models appear only when you run the model.

- You must "fix" at least one part in every CAD subassembly by mating it to the subassembly root. Otherwise, the massless root body is dynamically active and experiences infinite acceleration when forces or torques are applied to it. See "Roots, Subassemblies, and Hierarchies" on page 7-7 and "Optimizing Your Assembly with Subassemblies" on page 7-8 for more about fixing subassemblies.
- If you find constraints are violated while SimMechanics is running your model, try the following:
- Examine your original CAD assembly for redundant mates.
- Check and possibly increase the assembly's assembly tolerances at the original CAD export step.
- Check and possibly increase the translated model's assembly tolerances in the machine's Machine Environment block, in the Parameters pane.
- On the Constraints panel in the Machine Environment dialog, select the Use robust singularity handling check box.
- Never decrease assembly tolerances in a CAD-based SimMechanics model.

Instead, decrease the assembly tolerances at the original CAD export step.

Troubleshooting SimMechanics and Simulink Problems

You might also encounter general Simulink- or SimMechanics-related problems while running your model.

- For problems specific to SimMechanics, see "Troubleshooting Simulation Errors" on page 5-16.
- For general Simulink problems, consult the Using Simulink documentation.

Exporting a Part

In this example, you export an assembly with one part, a cup, and no mates. After you install your CAD translator, the two CAD files for the cup are located in the Applications/TheMathWorks/SimMechanics/examples/cup/ directory, relative to the top of your CAD platform installation. The two files are

- The full assembly file, cup_assembly.ASSEMBLYFILETYPE
- The cup itself, a part called cup.PARTFILETYPE

Although it has only one part, you must export the full assembly into XML, not just the cup part.

Viewing the CAD Assembly

Open the cup assembly file and check its geometry and mass properties.

Property	Value
Volume	0.0001 cubic meters $\left(\mathrm{m}^{3}\right)$
Surface area	0.0381 square meters $\left(\mathrm{m}^{2}\right)$
Density	3.0 grams $/ \mathrm{cm}^{3}=3000 \mathrm{~kg} / \mathrm{m}^{3}$
Mass	$0.2906 \mathrm{kilograms}(\mathrm{kg})$
Principal moments of inertia at the center of gravity	$\mathrm{I}_{\mathrm{x}}=0.00015, \mathrm{I}_{\mathrm{y}}=0.00067$,
	$\mathrm{I}_{\mathrm{z}}=0.00067 \mathrm{~kg}^{*} \mathrm{~m}^{2}$

The inertia tensor is computed with the origin at the center of gravity and the coordinate axes aligned with base-origin axes, indicated in the figure "Cup Assembly in a CAD Platform" on page 7-20. The x-axis is the cup's axis of symmetry, and the y - and z-axes point across the cup.

Exporting the CAD Assembly

Now export the assembly into Physical Modeling XML format. Under File, choose Save As, and for Save as type, select SimMechanics (*.xml). Click OK. The XML file cup_assembly.xml appears in your working CAD directory.

Generating the SimMechanics Model

You need to move or copy the exported XML file into a MATLAB working directory to generate a SimMechanics model from the file. See "Generating Models from Physical Modeling XML" on page 7-14 to learn how to generate models from XML files.

If you generate such a SimMechanics model, the model will have six blocks, a Machine Environment - Ground - Weld - Root Body - Weld - Cup combination inside a subsystem, called cup_assembly, representing the entire assembly. The Root Body is the special zero-mass/zero-inertia body inserted between ground and the cup. The second joint is a Weld, because the CAD assembly has no degrees of freedom. Deleting the Root Body and one of the Welds does not physically change the model, as long as you reconnect the remaining blocks.

Designing and Exporting Mates

In "Exporting a Part" on page 7-20, you create and export an assembly composed of a single part. The SimMechanics computer-aided design (CAD) translator converts the part into a body, with a mass, an inertia tensor, and body coordinate systems (CSs). Because there are no other parts in that CAD assembly, the SimMechanics body is welded to ground and has no degrees of freedom (DoFs).

Restricting Degrees of Freedom with Mates

CAD platforms normally assume that two parts with no constraints (mates) between them have the complete six relative DoFs possessed by any rigid body relative to another body. You restrict the DoFs between parts by connecting them with mates in the CAD assembly. Mates restrict relative body motion and reduce the number of relative DoFs between body pairs. There is always one assembly part welded to ground.

This section presents a set of complete CAD assemblies, with both parts and mates. Each example assembly consists of two instances of the same part file, representing two identical cubes. In different assemblies, the two cubes are constrained with different mate combinations in order to create different relative DoFs between the cubes. You can typically represent a set of DoFs with a large number of different mate combinations. Each mate combination here, in general, is not the unique way to create the corresponding set of DoFs.

- "Creating a Six DoF Joint" on page 7-24 assembles the two cubes with no mates, so that the cubes have the full six degrees of freedom relative to one another.
- "Creating a Prismatic Joint" on page 7-25 shows how to constrain the two cubes in two different ways so as to produce the same result, a single prismatic (translational) DoF between them.
- "Creating a Revolute Joint" on page 7-29 constrains the two cubes so as to allow only a single revolute (rotational) DoF between them.
- "Creating an Inplane Joint" on page 7-30 constrains the two cubes so as to allow two prismatic (translational) DoFs between them.
- "Creating a Spherical-Spherical Massless Connector" on page 7-31 constrains the cubes so as to allow relative spherical joint motion, with the two cubes separated by a nonzero distance.

Locating the Example Assembly Files

The CAD assembly files used as examples for this section are located, relative to the top of your CAD platform installation, in the directory

```
Applications/TheMathWorks/SimMechanics/examples/joints/
```

The cube part is contained in magic_cube.PARTFILETYPE.

Block Diagram Structure of Two-Part Assemblies

All the models that you generate in this section from the example CAD assemblies have a common structure, because each assembly has a fundamental root and two moving parts. Each model has eight blocks.

- The assembly's fundamental root. As in any generated CAD-based model, the four-block combination Machine Environment - RootGround - RootWeld - RootPart represents the assembly's fundamental root. The RootPart is a nonmoving, zero-mass/zero-inertia body. See "Building a CAD Assembly for SimMechanics" on page 7-6 and "Special Features of CAD-Based Models" on page 7-15.
- The moving bodies. The bodies representing the assembly's parts are magic_cube-1 and magic_cube-2.
- The joints. In all the models, the first cube is connected by a Weld to RootPart and cannot move. The second cube is connected to RootPart by a Custom Joint (except in the last example, "Creating a Spherical-Spherical Massless Connector").
Depending on the degrees of freedom (DoFs) in question in a particular assembly, the CAD translator configures the Custom Joint to represent different DoFs with combinations of prismatic, revolute, and spherical primitives. The second cube can move with respect to the first with the DoFs represented by the Custom Joint.

Some of the blocks in the generated models are redundant. You can manually edit and simplify the models without changing their physical properties. See "Editing and Completing CAD-Based Models" on page 7-16.

Creating a Six DoF Joint

The simplest assembly with two parts has no mates between the parts. The parts can move with respect to one another with all six degrees of freedom (DoFs).

Viewing and Exporting the Assembly

To see an example of such an assembly and translate it into a SimMechanics model,

1 Open the assembly sixDOF.ASSEMBLYFILETYPE. The two parts are magic_cube-1 and magic_cube-2.

Note, in the CAD hierarchy, that the Mates node has no entries. Therefore, relative to one another, the cubes are unconstrained in their motion and have six relative DoFs.

2 Now translate this CAD assembly into Physical Modeling XML format. From the File menu, select Save As. In the Save As dialog, keep the File name as sixDOF, but change Save as type to SimMechanics (*.xml). Then click OK.

The XML file is saved in your current working CAD directory.

Generating the Model

Now you can generate a model based on this assembly.
1 Move or copy the XML file to a working MATLAB directory. Then open MATLAB in that directory.

2 At the MATLAB command line, enter import_physmod('sixDOF'). SimMechanics automatically generates a model, sixDOF.mdl, based on sixDOF.xml.

The entire assembly is translated into a subsystem, also called sixDOF, within the model.

3 Open the subsystem. There are eight blocks, arranged in the common structure described in "Block Diagram Structure of Two-Part Assemblies" on page 7-23.

The Custom Joint represents the six DoFs between the two cubes with one spherical and three prismatic primitives. You can replace this Custom Joint with a Six-DoF Joint block.

Creating a Prismatic Joint

The following two assemblies use mates to constrain the two cubes to have only a single translational degree of freedom (DoF) between them. These are two ways to accomplish this; you can experiment with other mates to find more. In the translated SimMechanics models, this single DoF is a prismatic joint.

Prismatic as a Plane Mate and a Cylindrical Mate

Open the assembly file prismatic1.ASSEMBLYFILETYPE and examine the CAD hierarchy. Locate and expand the Mates node. There are two mates constraining the two cubes.

1 Highlight the first mate, Concentric1. The mate geometry is highlighted in the assembly. This mate allows the two cubes only to slide along and rotate about the z-axis running through the center of the parallel and concentric upper holes of each cube.

2 Highlight the second mate, Coincident2. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along the $y-z$ plane, with the two sides marked "SimMechanics" sharing a common plane, representing two translational DoFs. It also allows the two cubes to rotate about the x-axis. The cubes are not allowed to rotate about any other axis, or to translate perpendicular to the $y-z$ plane.

Plane and Cylindrical Mates Constraining Two Cubes

The two mates together constrain the two cubes such that they can only slide along the z-axis common to the two upper concentric holes. The second mate prevents rotation about this axis, leaving the whole assembly with only one translational DoF.

Prismatic as Two Orthogonal Plane Mates

Open the assembly file prismatic2.ASSEMBLYFILETYPE and examine the CAD hierarchy. Locate and expand the Mates node. There are two mates constraining the two cubes.

1 Highlight the first mate, Coincident2. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along the $y-z$ plane, with the two sides marked "SimMechanics" sharing a common plane, representing two translational DoFs. It also allows the two cubes to rotate about the x-axis. The cubes are not allowed to rotate about any other axis, or to translate perpendicular to the $y-z$ plane.

2 Highlight the second mate, Coincident3. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along the $x-z$ plane, with the two sides marked "The MathWorks" sharing a common plane, representing two translational DoFs. It also allows the two cubes to rotate about the y-axis. The cubes are not allowed to rotate about any other axis, or to translate perpendicular to the $x-z$ plane.

Two Plane Mates Constraining Two Cubes

The two mates together constrain the two cubes such that they can only slide along the z-axis common to the two planes $y-z$ and $x-z$, leaving the whole assembly with only one translational DoF.

Exporting the Assemblies and Generating SimMechanics Models

Export the two assemblies using the Save as type option SimMechanics (*.xml) under File \rightarrow Save As. The saved XML files are prismatic1.xml and prismatic2.xml. Copy or move them to a MATLAB working directory.

At the MATLAB command line, generate SimMechanics models using import_physmod. In both models, the assemblies are translated into the prismatic1 and prismatic2 subsystems, respectively. Each subsystem has eight blocks, arranged in the common structure described in "Block Diagram Structure of Two-Part Assemblies" on page 7-23.

The Custom Joint represents the single translational DoF between the two cubes with one prismatic primitive along the z-axis. You can replace this Custom Joint with a Prismatic Joint block.

Creating a Revolute Joint

The following assembly uses mates to constrain the two cubes to have only a single rotational degree of freedom (DoF) between them. In the translated SimMechanics model, this single DoF is a revolute joint.

Viewing and Exporting the Assembly

Open the assembly file revolute.ASSEMBLYFILETYPE and examine the CAD hierarchy. Locate and expand the Mates node. There are two mates constraining the two cubes.

1 Highlight the first mate, Concentric1. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along and rotate about the z-axis running through the center of the parallel and concentric upper holes of each cube.

2 Highlight the second mate, Coincident1. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along the $x-y$ plane, with the parallel sides sharing a common plane. It also allows the two cubes to rotate about the z-axis. The cubes are not allowed to rotate about any other axis, or to translate perpendicular to the $x-y$ plane.

The two mates together constrain the two cubes such that they can only rotate about the z-axis orthogonal to the $x-y$ plane, leaving the whole assembly with only one rotational DoF.

Export the assembly using the Save as type option SimMechanics (*.xml) under File $->$ Save As. The saved XML file is revolute.xml. Copy or move it to a MATLAB working directory.

Generating the Model

At the MATLAB command line, generate a SimMechanics model using import_physmod. The assembly is translated into an eight-block subsystem called revolute, arranged in the common structure described in "Block Diagram Structure of Two-Part Assemblies" on page 7-23.

The Custom Joint represents the single rotational DoF between the two cubes with one revolute primitive about the z-axis. You can replace this Custom Joint with a Revolute Joint block.

Creating an Inplane Joint

The following assembly uses mates to constrain the two cubes to have only two translational degrees of freedom (DoFs) between them. In the translated SimMechanics model, these two DoFs are two prismatic joints.

Viewing and Exporting the Assembly

Open the assembly file inplane.ASSEMBLYFILETYPE and examine the CAD hierarchy. Locate and expand the Mates node. There are two mates constraining the two cubes.

1 Highlight the first mate, Coincident2. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide along the $y-z$ plane, with the two sides marked "SimMechanics" sharing a common plane. It also allows the two cubes to rotate about the x-axis. The cubes are not allowed to rotate about any other axis, or to translate perpendicular to the $y-z$ plane.

2 Highlight the second mate, Parallel1. The mate geometry is highlighted in the assembly. This mate allows the two cubes to slide parallel to the $x-z$ plane, with the two sides marked "The MathWorks" parallel but not necessarily in the same plane. It also allows the two cubes to translate perpendicular to the $x-z$ plane and to rotate about the y-axis. The cubes are not allowed to rotate about any other axis.

The two mates together constrain the two cubes such that they can only slide in the y-z plane, leaving the whole assembly with only two translational DoFs.

Export the assembly using the Save as type option SimMechanics (*.xml) under File \rightarrow Save As. The saved XML file is inplane.xml. Copy or move it to a MATLAB working directory.

Generating the Model

At the MATLAB command line, generate a SimMechanics model using import_physmod. The assembly is translated into a subsystem, inplane,
having eight blocks, arranged in the common structure described in "Block Diagram Structure of Two-Part Assemblies" on page 7-23.

The Custom Joint represents the two translational DoFs between the two cubes with two prismatic primitives, along the y-axis and the z-axis. You can replace this Custom Joint with an In-Plane Joint block.

Creating a Spherical-Spherical Massless Connector

The following assembly use mates to constrain the two cubes to have six rotational degrees of freedom (DoFs) between them, represented by two spherical primitives. The spherical primitives pivot independently about two pivot points at a fixed relative distance. In the translated SimMechanics model, a spherical-spherical massless connector represents these six DoFs.

Viewing and Exporting the Assembly

Open the assembly file

```
spherical_spherical_massless_connector.ASSEMBLYFILETYPE
```

and examine the CAD hierarchy. Locate and expand the Mates node. There is one mate constraining the two cubes.

Highlight this mate, Distance1. The two spherical pivot points are highlighted as small red or green squares, one on each cube. These points are the endpoints of the rigid massless connector. The cubes can move such that the distance between these two points (the length of the massless connector) does not change. The mate allows the two cubes to pivot independently about their connector endpoints.

A Distance Mate Constraining Two Cubes

Export the assembly using the Save as type option SimMechanics (*.xml) under File \rightarrow Save As. The saved XML file is

```
spherical_spherical_massless_connector.xml
```

Copy or move it to a MATLAB working directory.

Generating the Model

At the MATLAB command line, generate a SimMechanics model using import_physmod. The assembly is translated into an eight-block subsystem called spherical_spherical_massless_connector, arranged in the common structure described in "Block Diagram Structure of Two-Part Assemblies" on page 7-23.

The Spherical-Spherical massless connector Joint block represents the two spherical primitives, each with three rotational DoFs, independently pivoting at each end of the massless, rigid connector connecting the two cubes.

Creating a CAD-Based Robot Arm Model

The example of this section is based on a more complex CAD assembly, a robot arm. It includes multiple parts, multiple mates, and a subassembly.

- "Viewing the Robot Arm Assembly"
- "Exporting the Robot Arm Assembly" on page 7-36
- "Generating and Completing the Robot Arm Model" on page 7-36

After you install your CAD translator, the eleven CAD files for the robot arm are located in the directory

Applications/TheMathWorks/SimMechanics/examples/robot/
relative to the top of your CAD platform installation. The eleven files are

File Name	CAD File Type
robot.ASSEMBLYFILETYPE	Assembly
grip.ASSEMBLYFILETYPE	Subassembly (flexible)
base.PARTFILETYPE forearm.PARTFILETYPE upperarm.PARTFILETYPE wrist.PARTFILETYPE	Parts (main assembly)
fingertips.PARTFILETYPE (twice) firstfingerlink.PARTFILETYPE firstfingerlinkL.PARTFILETYPE metacarpal.PARTFILETYPE secondfingerlink.PARTFILETYPE (twice)	Parts (subassembly)

Viewing the Robot Arm Assembly

Open the assembly file for the whole robot.

Robot Arm Assembly in a CAD Platform

Then examine the CAD hierarchy.

- Five of the part files are grouped into the subassembly grip. The subassembly uses two instances each of fingertips and secondfingerlink.
- The subassembly has its own group of 18 mates, MateGroup1.

Two mates, Angle1 and Angle2, are not active DoFs. If they were active, they would lock the grip fingers into the open position. Here, each grip finger can move separately.

- The other four part files are separate and grouped into the main assembly.
- The main assembly has its own MateGroup1, consisting of seven mates.

The whole assembly has eight DoFs. The grip subassembly alone contains two, allowing each finger to open and close separately. The main assembly has six DoFs:

- The upper arm can move relative to the base by pitching, yawing, and rolling (three DoFs).
- The forearm can yaw relative to the upper arm (one DoF).
- The wrist can pitch relative to the forearm (one DoF).
- The grip can rotate about its symmetry axis (one DoF).

Exporting the Robot Arm Assembly

If you opened the Settings window, apply the settings and close it. If you changed the assembly or any subassemblies, you need to rebuild the assembly before exporting it to XML.

Now export the assembly into Physical Modeling XML. Under File, choose Save As, and for Save as type, select SimMechanics (*.xml). Click OK. The XML file robot. xml appears in your working CAD directory.

Generating and Completing the Robot Arm Model

Now you can generate a model for a robot arm based on the file robot.xml. You can use the preconfigured demo file or export your own version of the XML file from the robot arm CAD assembly, then copy or move the XML file to your MATLAB working directory.

See "Generating Models from Physical Modeling XML" on page 7-14 to learn more about how to generate models from XML files.

Generating the Initial Model

The preconfigured robot.xml file is located in the toolbox/physmod/mech/ mechdemos directory of your MATLAB installation. Generate the model by entering

```
import_physmod('robot')
```

at the command line. The status bar appears and indicates the progress of model generation.

A model window, named robot, opens and is populated with blocks. Save this initial body-joint model, and note these properties:

- The whole robot arm assembly is contained in the subsystem robot.
- The top level of the assembly has 13 blocks and the grip-1 subsystem.
- The grip-1 subsystem has 18 blocks.

The original robot arm assembly has eight DoFs, with two in the grip subassembly and six at the top level. These translate into eight DoFs in the SimMechanics model:

- Six DoFs occur at the top level. These include the upper arm relative to the base, the forearm relative to the upper arm, the wrist relative to the forearm, and the grip relative to the wrist.
- Two DoFs occur in the subsystem. These are the rotational DoFs of the two grip fingers.
There are eight revolute primitives in the subsystem. But they occur in two closed loops as two independent four-bar mechanisms. Each four-bar mechanism actually has only one independent DoF, because each four-bar loop closes on itself. (See "A Four Bar Mechanism" on page 2-36 and "Counting Degrees of Freedom" on page 4-71.)

Obtaining Simulink and Additional SimMechanics Blocks

To complete the robot arm model, you need blocks from the SimMechanics and Simulink block libraries. Open these libraries by entering mechlib and simulink, respectively, at the command line.

You can also open the Simulink library from the MATLAB window menu or toolbar.

Editing the Model

Some of the blocks in the generated robot arm model are redundant. You can remove them without affecting the model's dynamics, as long as you properly reconnect the remaining blocks.

- At the top level, the SimMechanics_RootPart block is a zero-mass, zero-inertia Root Body. You can delete it, along with the SimMechanics_RootWeld block, then reconnect the Root Ground to the base through the SimMechanics_RootPart--base-1 Weld block.
- In the grip-1 subsystem, you can delete the grip-1 Root Body block and the grip-1--grip-1 | metacarpal-1 Root Weld block, because they are unnecessary. You can also delete the associated body coordinate system on the metacarpal-1 Body block.

The non-Weld Joint blocks, those that carry DoFs, are Custom Joints configured with the proper primitives to represent the original CAD assembly's DoFs. You can replace them with appropriate blocks from the SimMechanics Joints library.

- All the Custom Joints, except for one, are configured to represent a single revolute primitive. You can replace each with an equivalent Revolute block.
- The exception is the base-1--upperarm-1 Custom Joint, the first non-Weld Joint encountered as you move away from the Ground block. This Joint is configured to represent a spherical primitive (three rotational DoFs). You can replace this block with an equivalent Spherical block.

If you replace a Custom Joint with a different, equivalent Joint, be sure to reproduce the axis of action and reference coordinate system information from each old block to each new one.

Save this intermediate model as robot2.

Adding an Actuator and a Sensor

You can motion-actuate the wrist relative to the forearm.
1 Double-click the forearm-1--wrist-1 Joint. Change the Number of sensor/actuator ports to 2 .

2 Click OK. Two new ports appear on the Joint.
3 From the SimMechanics Sensors \& Actuators library, drag, drop, and attach a Joint Actuator and a Joint Sensor to these new ports.

4 Configure the Joint Actuator to accept motion signals. Be sure the angular units are deg (degrees).

5 From the Simulink library, drag and drop a Sine Wave, a Mux, two Integrator, and one Scope block. Connect them to the previous blocks as shown. Rename the Scope block to Pitch Angle.

Consult the Simulink documentation for more about these Simulink blocks.

6 In the Sine Wave block, set the Amplitude to 60*pi*pi and the Frequency to 60 . Leave all other defaults unchanged.

7 In the lower Integrator block, set Initial condition to -60*pi. Leave all other defaults unchanged.

Configuring Tolerances

The original robot arm CAD assembly requires looser tolerances than the SimMechanics defaults, and its motion can lead to singularities. To avoid simulation errors or severe slowdown, you need to reconfigure the assembly tolerances and constraint solver.

1 Open the Machine Environment block.
2 On the Parameters panel, reset the Linear assembly tolerance to 1e-2 m (meters) and the Angular assembly tolerance to $1 \mathrm{e}-1 \mathrm{rad}$ (radians).

3 On the Constraints panel, select the Use robust singularity handling check box. Leave all other defaults. Click OK.

4 Resave your finished model as robot3.

Observing the Arm Motion

You can now run robot3 and examine its motion.
To use the motion sensor,
1 Double-click the Pitch Angle block to open a scope.
2 Click the Start simulation button. The scope plot displays a trace of the pitch angle motion.

To visualize the body motions,
1 From the Simulation menu, select Configuration Parameters, then the SimMechanics node.

2 Select Update machine visualization on update diagram and Animate machine during simulation. Click OK.

3 Select Update Diagram from the Edit menu. The SimMechanics visualization window opens.

4 In the special SimMechanics menu of the visualization window, select Machine Display, then Ellipsoids. The display now shows the robot arm's component bodies as ellipsoids.

5 Click the Start button. The simulation begins. Observe the robot arm motion in the SimMechanics window.

Modeling a Stewart Platform

This section introduces a very complex computer-aided design (CAD) assembly that models the Stewart platform, a six-degree-of-freedom (DoF) mechanical system used for accurate positioning applications.

- "Viewing the Stewart Platform Assembly" on page 7-42
- "Exporting the Stewart Platform Assembly" on page 7-43
- "Generating the Stewart Platform Model" on page 7-43
- "Visualizing the Stewart Platform Motion" on page 7-46

Note The Stewart platform assembly of this section is an advanced example of computer-aided design. You should work through the previous examples of this chapter before attempting to work with this assembly.

After you install your CAD translator, the 45 CAD files for the Stewart platform are located in the directory

Applications/TheMathWorks/SimMechanics/examples/stewart/
relative to the top of your CAD platform installation. The master assembly file is stewart_platform.ASSEMBLYFILETYPE.

What the Stewart Platform Does

The Stewart platform consists of two plates connected by six mobile and extensible legs. The lower or base plate is immobile. The upper or mobile plate has six degrees of freedom, three rotational and three translational. The platform is highly stable and easy to control. Originally designed for flight simulators, the Stewart platform is also used for many transportation and construction applications that require precise positioning and orienting.

The platform's six legs each have two parts, an upper and a lower leg, with a piston-like cylindrical DoF between each pair of parts. The legs are connected to both the base plate and the top plate by universal joints located at each end of each leg. (These universals are not just sets of abstract DoFs. Each also contains a spider-like body, while also having two DoFs.) The upper part of each leg can slide into and out of the lower leg, allowing each leg to be varied
in length. The position and orientation of the mobile platform (top plate) varies depending on the lengths to which the six legs are separately adjusted.

The entire Stewart platform assembly, once the top is connected to the legs, has six independent DoFs, the same as the top plate would have if it were disconnected. You can think of these independent DoFs as the six adjustable leg lengths or, equivalently, as the six DoFs of the mobile plate. See "Counting Degrees of Freedom" on page 4-71 in the "Modeling Mechanical Systems" chapter.

Viewing the Stewart Platform Assembly

Open the master assembly file, stewart_platform.ASSEMBLYFILETYPE. Grab the assembly and rotate it about to view the top and bottom plates and the legs.

The Stewart Platform CAD Assembly

The CAD hierarchy for the Stewart platform contains assemblies for the top and base plates, as well as assemblies for the six legs. All the mates of the assembly are grouped into one mate group, containing 30 mates. There are 448 component parts and 38 subassemblies, which you can open individually to examine the separate parts.

The base plate is about 24 centimeters (cm) in diameter, the top plate about 16.5 cm . When centered and oriented flat, the top plate is about 20 cm above the base. The assembly models the platform material as aluminum (about 2.7 grams per cubic cm).

Exporting the Stewart Platform Assembly

If you opened the Settings window, apply the settings and close it. If you changed the assembly or any subassemblies, you need to rebuild the assembly before exporting it to XML.

Now export the assembly into Physical Modeling XML by using Save As under File and SimMechanics (*.xml) for Save as type.

Because the assembly is so complex, the export process takes longer than it does for simpler assemblies. As the export proceeds, the translator highlights various parts and subassemblies. When the highlighting stops, the export is finished.

The exported model appears as the XML file stewart_platform.xml in your working CAD directory.

Generating the Stewart Platform Model

Now move or copy the stewart_platform. xml file into your working MATLAB directory.

At the MATLAB command line, enter

```
import_physmod('stewart_platform')
```

and wait for SimMechanics to complete the generation of the new Simulink model stewart_platform.

Inspecting the Generated Model and Counting Its DoFs

The entire Stewart platform model is contained in a subsystem, also called stewart_platform. This subsystem itself contains seven subsystems.

The Stewart Platform Model: Base, Legs, and Top Plate

The subsystems correspond to the subassemblies of the original CAD assembly: one is the base plate, the other six are the platform legs.

- The base plate subassembly BaseRingAssembly-1 contains six subassemblies, modeling a base swivel bearing for each leg.
- The six leg subassemblies, ActuatorAssm, model the upper and lower halves of each leg and represent part of their DoFs.

For each leg, there are six DoFs. Two pairs of revolutes associated with each leg represent the two universal joints connecting each leg to the top and base plates, respectively. Each of these universals has two DoFs.

- At the top level, there are two revolutes, one attached to either end of a leg subassembly, connecting each leg to the base and top plates, respectively.
- Within each leg subassembly, there are two other revolutes, each one connecting the leg to the top and base plates, respectively.

One of the revolutes inside the leg subassembly pairs with one of the revolutes outside the leg assembly to make up a two-DoF universal. These pairs occur twice on each leg, one connecting the leg to the top plate, the other connecting the leg to the base plate.

- Within each leg subassembly, there is one prismatic, representing the leg's freedom to expand or contract along its shaft.
- Within each swivel bearing subassembly, itself located within the base ring assembly, is another revolute representing each leg's freedom to rotate about its shaft.

In all, each leg has six DoFs. But the constraints imposed by attaching each leg to fixed points on the base and top plates, respectively, reduce these DoFs to two independent DoFs for each leg: the freedom to rotate about its shaft, and the freedom to expand or contract along its shaft. The rotational DoFs associated with the universals at the attachment points are completely dependent on the leg's prismatic DoF.

Editing the Generated Model

The generated model contains a large number of redundant RootWeld and zero-mass RootPart blocks. You can delete these and not affect the model's dynamics, if you take care to reconnect the remaining bodies properly after deleting each Weld.

If you want the motion of the platform to be controlled by something other than gravity, you need to add the appropriate Actuators to the model. To quantify the model's motion, you need to make precise measurements with Sensors. You can drive the actuators with external control signals to model an open-loop controller for the Stewart platform. If you introduce feedback from the sensors to the actuators, you can model a closed-loop controller.

You can learn more about using actuator and sensor blocks in the "Modeling Mechanical Systems" chapter.

Visualizing the Stewart Platform Motion

Without any external forces acting, apart from gravity, the platform collapses under its own weight. You can verify this by running and visualizing your Stewart platform model.

1 From the Simulation menu, select Configuration Parameters. The Configuration Parameters dialog opens. Choose the SimMechanics node.

2 Select Update machine visualization on update diagram and Animate machine during simulation. Click Apply or OK.

3 From the Edit menu, select Update Diagram. The SimMechanics visualization window opens with the special SimMechanics controls. The window displays the Stewart platform in its initial position.

4 Start the simulation by clicking the Start button in the toolbar of either the visualization window or the model window.

The mobile plate falls under its own weight and reaches the base plate in about 0.2 seconds. Because there is nothing to stop the legs or the top plate, the platform continues to collapse: the mobile plate falls below the base plate, and the upper and lower parts of each leg come apart.

Find more information about SimMechanics visualization in the "Visualizing and Animating Machines" chapter.

Case Studies

SimMechanics features analysis modes for studying machine motion beyond the simple forward dynamics integration of forces. This chapter explains how to specify machine motion, then deduce the necessary forces and torques, with the inverse dynamics and kinematic analysis modes. You can also specify a machine steady state and analyze perturbations about any machine trajectory by trimming and linearizing your model.

Dynamics of Mechanical Systems (p. 8-2)

Finding Forces from Motions (p. 8-6)

Trimming Mechanical Models (p. 8-16) Examples of finding machine steady states with the

Linearizing Mechanical Models (p. 8-28)

Trimming mode of SimMechanics
Review of how forces and torques produce accelerations

Examples of the Inverse Dynamics and Kinematics analysis modes of SimMechanics

Determining the linear response of perturbed mechanical systems with SimMechanics and Simulink

Dynamics of Mechanical Systems

While kinematics describes the motion of bodies, as explained in the "Representing Motion" chapter, dynamics explains the motion in terms of forces and torques. The accelerations or second derivatives of the bodies' positions are directly related, by Newton's laws of motion, to the forces and torques applied to the bodies. You can predict accelerations if you are given the applied forces/torques, or relate known accelerations to the forces/torques that cause them, as explained in "Forward and Inverse Dynamics."

The next section, "Forces and Torques Determine Accelerations" on page 8-3, presents Newton's laws of dynamics for translational and rotational motion. The books of Goldstein [2] and José and Saletan [6] present rigid body mechanics in great detail.

Forward and Inverse Dynamics

Dynamical equations such as Newton's laws of motion relate cause and effect. In mechanics, the cause is a set of forces and torques applied to the bodies of a mechanical system; the effect is the set of resulting motions. Dynamical equations allow you to analyze motion in either direction:

- In forward dynamics, you apply a given set of forces/torques to the bodies to produce accelerations. SimMechanics integrates the accelerations twice to yield the velocities and positions as functions of time.
A set of initial conditions is needed to specify the initial positions and velocities and produce a complete solution for the motion. Initial conditions must be checked for consistency with constraints.
- Inverse dynamics starts with given motions as functions of time and differentiates them twice to yield the forces and torques needed to produce the given motions. The given motion functions of time must be checked for consistency with constraints.

You can use SimMechanics to analyze mechanical motion in both cases by choosing an analysis mode. The mode you choose depends on the topology of your system.

Analysis Mode	Type of Analysis
Forward Dynamics	Forward dynamics (any topology)
Trimming	Forward dynamics (steady-state motion)
Inverse Dynamics	Inverse dynamics (open topology)
Kinematics	Inverse dynamics (closed topology)

See "Simulating and Analyzing Mechanical Motion" on page 1-20 for an overview of the SimMechanics analysis modes. Then see "Analyzing the Motion" on page 5-7 for detailed steps to implement these modes in your model. The case study "Finding Forces from Motions" on page 8-6 applies inverse dynamics to SimMechanics models.

Forces and Torques Determine Accelerations

Newton's second law of motion relates the force on a body, its mass, and the acceleration it experiences as a result of that force. The equivalents for rotational motion are the Euler equations.

Newton's Equations for Translational Dynamics

Let \boldsymbol{F}_{A} be the net force acting on a body A that has a constant mass m_{A} and a center of gravity (CG) position $\boldsymbol{x}_{\mathrm{A}}$. Newton's second law, valid for an inertial observer, relates the force on A to the translational acceleration of its CG.

$$
\boldsymbol{F}_{A}=m_{A} \frac{\mathrm{~d}^{2} \boldsymbol{x}_{A}}{\mathrm{~d} t^{2}}
$$

Equivalently, the linear momentum $\boldsymbol{p}_{A}=m_{A} \boldsymbol{v}_{A}$ relates to force as $\boldsymbol{F}_{A}=d \boldsymbol{p}_{A} / d t$.
In forward dynamics, the force $\boldsymbol{F}_{\mathrm{A}}$ is given and the motion $\boldsymbol{x}_{\mathrm{A}}(t)$ is found by integration, supplemented by initial position and velocity. In inverse dynamics, the motion $\boldsymbol{x}_{\mathrm{A}}(t)$ is given and the force on the body is found. In both cases, the mass must be known.

Euler's Equations for Rotational Dynamics

Rotational motion requires definition of a pivot point, the fixed center of rotation, and the angular velocity vector ω with respect to that pivot. If \boldsymbol{r} is the position, with respect to the pivot, of any point in a body, the velocity \boldsymbol{v} of that point is $\boldsymbol{v}=\omega \times \boldsymbol{r}$.

The equivalent of the mass of a body in rotational dynamics is the inertia tensor \boldsymbol{I}, a 3-by-3 matrix. The angular momentum of a body is $\boldsymbol{L}=\boldsymbol{I}^{*} \omega$. The equivalent of the force on a body in rotational dynamics is the torque τ, which is produced by a force \boldsymbol{F} acting on the body at a point \boldsymbol{r} as $\tau=\boldsymbol{r} \times \boldsymbol{F}$.

The analog to Newton's second law for rotational motion, as measured by an inertial observer, just equates the torque τ_{A} applied to a body A, defined with respect to a given pivot, to the time rate of change of \boldsymbol{L}_{A}, that is, $\tau_{A}=d \boldsymbol{L}_{A} / d t$. It is easiest to take the pivot as the origin of an inertial coordinate system such as World. Unlike the case of translational motion, however, where the mass m_{A} remains constant as the body moves, the inertia tensor \boldsymbol{I}_{A} changes as the body rotates, if it is measured in an inertial frame. There is no simple way to relate $d \boldsymbol{L}_{A} / d t$ to the angular acceleration $d \omega / d t$.

The common solution to this difficulty is to work in the body's own rotating frame, where the inertia tensor is constant, and take the body's CG as the pivot. Diagonalize the inertia tensor. Since \boldsymbol{I} is real and symmetric, its eigenvalues $\left(I_{1}, I_{2}, I_{3}\right)$ (the principal moments of inertia) are real. Its eigenvectors form a new orthogonal triad, the principal axes of the body. But this frame fixed in the body is not inertial, and the torque-angular acceleration relationship is modified from its inertial form into the Euler equations:

$$
\begin{aligned}
& I_{1} \dot{\omega}_{1}-\omega_{2} \omega_{3}\left(I_{2}-I_{3}\right)=\tau_{1} \\
& I_{2} \dot{\omega}_{2}-\omega_{3} \omega_{1}\left(I_{3}-I_{1}\right)=\tau_{2} \\
& I_{3} \dot{\omega}_{3}-\omega_{1} \omega_{2}\left(I_{1}-I_{2}\right)=\tau_{3}
\end{aligned}
$$

The components of the rotational vectors here are projected along the principal axes that move with the body's rotation.

Linearizing the Dynamical Equations and Constraints

To study a system's response to and stability against external changes, you can apply small perturbations in the motion or the forces/torques to a known trajectory and force/torque set. SimMechanics and Simulink provide analysis
modes and functions for analyzing the results of perturbing mechanical motion. The later sections of this chapter, "Trimming Mechanical Models" on page 8-16 and "Linearizing Mechanical Models" on page 8-28, demonstrate their use.

You can perturb Newton's and Euler's laws with a small additional force $\Delta \boldsymbol{F}$ and torque $\Delta \tau$ and determine the associated perturbations in motion, $\Delta \boldsymbol{x}$ and $\Delta \omega$. You can also perturb the system inversely, making small changes to the motion and determining the forces and torques necessary to create those changes.

The perturbed Newton's and Euler's equations are

$$
\Delta \boldsymbol{F}=m^{*} \mathrm{~d}^{2}(\Delta \boldsymbol{x}) / \mathrm{dt}^{2}
$$

and

$$
\begin{aligned}
& I_{1} \Delta \dot{\omega}_{1}-\left(\Delta \omega_{2} \omega_{3}+\omega_{2} \Delta \omega_{3}\right)\left(I_{2}-I_{3}\right)=\Delta \tau_{1} \\
& I_{1} \Delta \dot{\omega}_{2}-\left(\Delta \omega_{3} \omega_{1}+\omega_{1} \Delta \omega_{3}\right)\left(I_{3}-I_{1}\right)=\Delta \tau_{2} \\
& I_{1} \Delta \dot{\omega}_{3}-\left(\Delta \omega_{1} \omega_{2}+\omega_{2} \Delta \omega_{1}\right)\left(I_{1}-I_{2}\right)=\Delta \tau_{3}
\end{aligned}
$$

The vector components of the Euler's equations are projected along the body's moving principal axes.

If your model has constraints, you must perturb them as well:

$$
g(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)+\frac{\partial g}{\partial \boldsymbol{x}} \cdot \Delta \boldsymbol{x}+\frac{\partial g}{\partial \dot{\boldsymbol{x}}} \cdot \Delta \dot{\boldsymbol{x}}=0
$$

Finding Forces from Motions

The SimMechanics Kinematics and Inverse Dynamics modes (see "Analyzing the Motion" on page 5-7) enable you to find all the forces on a closed-loop system or an open system, respectively, given a model that completely specifies the system's motions. Because the model specifies the positions, velocities, and accelerations of the model's components, these modes, unlike Forward Dynamics mode, do not need to compute these quantities. Consequently, Kinematics and Inverse Dynamics modes take less time to compute the forces on a system. The time saving depends on the size and complexity of the system being simulated.

To use these modes, you must first build a model of the system that specifies completely the positions, velocities, and accelerations of the system's joints and bodies. Such a model is called a kinematic model. You create a kinematic model by interconnecting blocks representing the bodies and joints of the system and then connecting actuators to the joints to specify the motions of the bodies.

A model does not have to actuate every joint to specify completely the motions of a system. In fact, the model need actuate only as many joints as there are independent degrees of freedom in the system. (See "Counting Degrees of Freedom" on page 4-71.) For example, a model of a four bar mechanism need actuate only one of the mechanism's joints, because a four bar mechanism has only one degree of freedom. To avoid overconstraining the model's solution, the number of actuated joints should not exceed the number of degrees of freedom.

Caution Attempting to simulate an overconstrained model causes Simulink to stop the simulation with an error.

The following sections show how to use the Kinematics and Inverse Dynamics modes to find the forces on the joints of a closed- and an open-topology system, respectively.

- "Kinematics with a Four Bar System" on page 8-7
- "Inverse Dynamics with a Double Pendulum" on page 8-11

Kinematics with a Four Bar System

Note The Kinematics mode works only on closed topologies and requires motion-actuating every independent DoF (see "Counting Degrees of Freedom" on page 4-71). There must also be no Joint Stiction Actuators and no nonholonomic constraints.

Consider the four bar system used to illustrate model building in the tutorial titled "A Four Bar Mechanism" on page 2-36.

Suppose that you want to keep this system from collapsing under its own weight. Because this system has only one degree of freedom, applying a counterclockwise torque to the joint labeled Revolute1 would accomplish this objective. But how much torque is sufficient?

To answer this question, you must first build a kinematic model of the stationary four bar system. The kinematic model must specify the structure of the four bar system and its motion over time. The four bar model from the four bar tutorial specifies the structure of the system. You can therefore use the tutorial model as a starting point for creating the kinematic model. You can find this version of the tutorial in the model mech_four_bar_forw.

To turn the tutorial model into a kinematic model, you must specify how the system moves over time. In particular, you want the model to require that the system remain stationary. Because a four bar system has only one degree of freedom, you need specify only that one of the joints remains stationary. You can use a Joint Actuator to accomplish this task.

The following diagram shows a kinematic model derived from the tutorial model in this manner. This system is modeled in mech_four_bar_kin.

The model uses a Joint Actuator block driven by a Constant block to specify the motion on the Revolute 1 joint. The Constant block outputs a three-element vector that specifies the angular position, velocity, and acceleration, respectively, of the joint as 0 . The model uses a Joint Sensor block connected to a Scope block to display the resulting torque on the joint and a To Workspace block to save the torque signal to the MATLAB workspace. Running this model in Kinematics mode reveals that the torque on the Revolute1 joint is 27.9032 Newton-meters.

To verify that the computed torque is, indeed, the torque required to keep the system stationary, create a forward-dynamics model that applies the computed torque to the Revolute1 joint. This model is contained in mech_four_bar_stat.

Now run the model in Forward Dynamics mode, with the Revolute1 Angle Scope open.

The Scope display reveals that the machine does, indeed, remain stationary, although only for about 1.5 seconds. The model is nonlinear and unstable, and the computed force value is not copied exactly in the new model.

Inverse Dynamics with a Double Pendulum

Note The Inverse Dynamics mode works only on open topologies and requires motion-actuating every independent DoF (see "Counting Degrees of Freedom" on page 4-71).

Consider a double pendulum consisting of two thin rods each one meter long and weighing one kilogram. Suppose that the upper rod is initially rotated 15 degrees from the perpendicular.

How much torque is required to keep the pendulum stationary? Solving this problem entails building a kinematic model of the stationary pendulum. The model must represent the geometry of the double pendulum and specify that it remains stationary throughout the simulation.

The kinematic model can take different approaches to specifying the initial state of the pendulum. One approach uses Body block parameters to specify the initial states. Another approach uses Actuator block parameters.

Using Body Parameters to Specify Initial Conditions

The following diagram illustrates the Body block approach to modeling initial states. The model is mech_dpend_invdyn1.

This model represents the pendulum by two Body blocks and two Revolute Joint blocks. The CS1 axis of the upper body (B1) of the pendulum is rotated 15 degrees from the perpendicular (see annotation for block B1). The coordinate systems for the lower block (B2) are aligned with CS1 of the upper block. The CS1 of B2 is rotated - 15 degrees relative to CS1 of B1; i.e., it is perpendicular to the world coordinate system. Actuator blocks connected to the joint blocks specify that the pendulum should not move from its initial position. The model uses sensor blocks connected to To Workspace blocks to output the torques on the upper and lower joints as MATLAB workspace variables torque_upper and torque_lower, respectively.

Using Actuator Blocks to Specify the Initial States

The following diagram shows the use of Actuator blocks to specify the initial kinematic state. The system is modeled in mech_dpend_invdyn2.

Using the actuators to specify the displacement slightly simplifies the configuration of the body blocks.

Simulating either model in Inverse Dynamics mode (required for open-loop models; see "Analyzing the Motion" on page 5-7) causes Simulink to compute the joint torques required to maintain the pendulum in its initial position. The torques are 3.8085 and 0 Newton-meters, respectively. You can verify that these are the correct answers by creating a version of the model that applies the computed torques to the joints and simulating the model in Forward Dynamics mode. For example, the following diagram illustrates a forward
dynamics version of the kinematic model that uses the joint actuators to specify the initial angular displacement of the pendulum bodies. Open the model mech_dpend_stat.

This model uses Initial Condition blocks to specify the initial 15 degree displacement of the upper body from the vertical in the world coordinate system and the corresponding initial - 15 degree displacement of the lower body from the vertical in the coordinate system of the upper body. The negative displacement of the lower body is equivalent to positioning it as vertical in the world coordinate system.
Simulating this model in Forward Dynamics mode results in the following display on the upper joint scope.

The scope reveals that the upper joint never moves from its initial 15 degree displacement, thus confirming that the computed torque is correct.

Trimming Mechanical Models

Trimming a mechanical system refers to the finding of solutions for inputs, outputs, states, and state derivatives satisfying conditions that you specify beforehand. For example, you can seek steady-state solutions where some or all of the derivatives of a system's states are zero. To use the Simulink trim command on a system represented by a SimMechanics model, you must select the SimMechanics Trimming mode (see "Analyzing the Motion" on page 5-7). You must also specify the conditions that the solution must satisfy. These examples show you how to trim mechanical models.

- "Unconstrained Trimming of a Spring-Loaded Double Pendulum" on page 8-17
- "Constrained Trimming of a Four Bar Machine" on page 8-23

Consult the Using Simulink documentation for more on trimming models. You can also enter help trim at the MATLAB command line.

Restrictions on Trimming Mechanical Models

You should avoid using certain SimMechanics or Simulink features when trimming a model.

- A trimmed SimMechanics mechanism must be assembled. Do not use disassembled joints while trimming. (For more information, see "Modeling with Disassembled Joints" on page 4-30.)
- You cannot use Driver blocks while trimming a model.
- SimMechanics ignores Joint Initial Condition Actuator blocks in a trimmed model.
- Do not incorporate events or motion discontinuities in your trimmed model. In particular, do not use SimMechanics Joint Stiction Actuator blocks. Trimming mechanical models with stiction causes an error.

Unconstrained Trimming of a Spring-Loaded Double Pendulum

Consider the following spring-loaded double pendulum.

The joint connecting the upper and lower arms of this pendulum contains a torsional spring and damper system that exerts a counterclockwise torque linearly dependent on the angular displacement and velocity of the joint. Suppose that the lower arm is folded upward almost vertically and then allowed to fall under the force of gravity. At what point does the spring-damper system reach equilibrium; that is, at what point does it cease to unfold?

To find an equilibrium point for this system,
1 Build a SimMechanics model of the system. This diagram shows an example of such a model, mech_dpend_trim.

This model uses Body blocks to model the upper and lower arms of the pendulum and a Revolute Joint block (J1) to model the connection between the pendulum and ground. The model uses a Subsystem block (J2) to model the spring-loaded revolute joint between the arms. This subsystem uses a negative feedback loop to model a joint subject to a damped torsional spring by multiplying the angular displacement and velocity of the joint, respectively, by spring and damper constants. The loop sums the resulting torques and feeds them back into the joint with a Joint Actuator block. The result is that the joint experiences a torque opposing its motion and
proportional to its angular displacement and velocity. You could also model this damped torsional spring with a Joint Spring \& Damper block.

The spring and damper constants used here were chosen by running the model with various candidate values and choosing the ones that resulted in a moderate deflection of the pendulum.

2 Run the model in Forward Dynamics mode to estimate an initial guess for the nontrivial equilibrium point of the pendulum.

The simulation reveals that the spring stops unfolding after about nine seconds; that is, it reaches a steady-state point. At this point the angles of the upper and lower joints are about -18 and -51 degrees, respectively, and the velocities are zero. The trim command can find the values of these states precisely.

3 After running in Forward Dynamics mode, determine the layout of the model's state vector.

You need to determine the layout of the model's state vector in order to tell the trim command where in the model's state space to start its search for the pendulum's equilibrium point (the point where it stops unfolding). Use the SimMechanics mech_stateVectorMgr command to perform this task. Refer to the Ground block, G.

```
v = mech_stateVectorMgr('mech_dpend_trim/G');
v.StateNames
ans =
    'mech_dpend_trim/J2/RevoluteJoint:R1:Position'
    'mech_dpend_trim/J1:R1:Position'
    'mech_dpend_trim/J2/RevoluteJoint:R1:Velocity'
    'mech_dpend_trim/J1:R1:Velocity'
```

The StateNames field of the state vector object returned by mech_stateVectorMgr lists the names of the model's states in the order in which they appear in the model's state vector. Thus the field reveals that the model's state vector has the following structure:

```
x(1) = position of lower joint (J2)
x(2) = position of upper joint (J1)
x(3) = velocity of lower joint (J2)
x(4) = velocity of upper joint (J1)
```

4 Determine an initial state vector.
The initial state vector specifies the point in a system's state space where the trim command starts its search for an equilibrium point. The trim command searches the state space outward from the starting point, returning the first equilibrium point that it encounters. Thus, the starting point should not be at or near any of a system's trivial equilibrium points. For the double pendulum, the point $[0 ; 0 ; 0 ; 0]$ (i.e., the pendulum initially folded up and stationary) is a trivial equilibrium point and therefore should be avoided.

The initial state vector must be a column vector and must specify angular states in radians.

Often, the choice of a good starting point can be found only by experiment, that is, by running the trim command repeatedly from different starting points to find a nontrivial equilibrium point. This is true of the double pendulum of this example. Experiment reveals that this starting point,

```
ix(1) = J2 (lower joint) angle = -35 degrees = -0.6109 radians
ix(2) = J1 (upper joint) angle = -10 degrees = -0.1745 radians
ix(3) = J2 angular velocity = 0 radians/second
ix(4) = J1 angular velocity = 0 radians/second
```

yields a nontrivial equilibrium point. You can save time by creating an initial state vector set to these values.

```
ix = [-35*pi/180; -10*pi/180; 0; 0];
```

Note The trim command ignores initial states specified by Joint Initial Condition Actuator blocks. Thus, you cannot use these blocks to specify the starting point for trimming a model. If your model contains IC blocks, create the initial state vector as if the IC blocks did not exist.

5 Now reset the analysis type to Trimming on the Parameters pane of the Machine Environment dialog.

This option inserts a constraint subsystem and associated output at the top level of the model.

SimMechanics inserts the constraint output in order to make the constraints available to the trim command. The spring-loaded double pendulum has no constraints. Hence the constraint outport does not output nontrivial constraint data and is not needed to trim the pendulum.

6 Enter the following commands to find the equilibrium point nearest to the starting point.

```
ix = [-35*pi/180; -10*pi/180; 0; 0];
iu = [];
[x,u,y,dx] = trim('mech_dpend_trim',ix,iu);
```

The array ix specifies the starting point determined in step 4. The array iu specifies the initial inputs of the system. Its value is null because the system has no inputs. (Thus the u and y outputs are null.) The third command executes the form of the trim command that finds a system's steady-state (equilibrium) points, i.e., the points where the system's state derivatives are zero. The array x contains the state vector corresponding to the first equilibrium point that the trim command finds:

```
x =
    -0.8882
    -0.3165
    -0.0000
    0.0000
```

The resulting states are angular positions and velocities expressed in radians. Based on the layout of the model's state vector determined in step 3 , the pendulum reaches equilibrium when its upper joint has deflected to
an angle of - 18.1341 degrees and its lower joint to an angle of -50.8901 degrees. The system state derivatives dx are zero, within tolerances.

Constrained Trimming of a Four Bar Machine

Consider a planar four bar system consisting of a crank, a coupler, and a rocker. The following figure shows a block diagram and a convex hull diagram of the four bar system. The model is mech_four_bar_trim.

This system is constrained by virtue of being a closed loop. Not all the degrees of freedom are independent. (In fact, only one is.) Suppose you want to find the torque required to turn the crank at an angular velocity of 1 radian/second over a range of crank angles. Follow this procedure with the trim command and the SimMechanics Trimming mode to determine the torque:

1 Cut the closed loop that represents the four bar system at the joint (Revolute1) connecting the rocker to ground (see "Modeling Bodies and Grounds" on page 4-8).

Manually cutting the rocker joint ensures that SimMechanics does not cut the four bar loop at the crank joint and thereby eliminate the crank's position and velocity from the system's state vector.

2 Select Signal Dimensions from the Format > Port/Signal Displays menu.
This causes Simulink to display the width of signals on the model diagram and hence enables you to read the number of constraints on the four bar system from the diagram in the next step.

3 Set the analysis mode for the model to Trimming (see "Analyzing the Motion" on page 5-7).

This causes SimMechanics to insert a subsystem and an output block that outputs a signal representing the mechanical constraints on the four bar system. These constraints arise from the closure of the loop.

The width of the constraint signal (4) reflects the fact that the four bar system is constrained to move in a plane and thus has only four constraints: two position constraints and two velocity constraints.

4 Determine the layout of the system's state vector. Use the state vector command mech_stateVectorMgr to perform this task:

```
Handle = get_param(find_system('mech_four_bar_trim/ ...
```

Revolute2'), 'handle');
StateManager = mech_stateVectorMgr(Handle\{1\});
StateManager.StateNames
ans =
'mech_four_bar_trim/Revolute2:R1:Position'
'mech_four_bar_trim/Revolute3:R1:Position'
'mech_four_bar_trim/Revolute4:R1:Position'
'mech_four_bar_trim/Revolute2:R1:Velocity'
'mech_four_bar_trim/Revolute3:R1:Velocity'
'mech_four_bar_trim/Revolute4:R1:Velocity'

5 Specify the initial state vector $x 0$ and the index array ix:

```
x0 = [0;0;0;0;0;1];
ix = [3;6];
```

The array $x 0$ specifies that the trim command should start its search for a solution with the four bar system in its initial position and with the crank moving at an angular velocity (state 6) of 1 radian/second. The array ix specifies that the angular position (state 3) and velocity (state 6) of the crank must equal their initial values, 0 radians and 1 radian/second, respectively, at the equilibrium point. It is not necessary to constrain the other states because the four bar system has only one independent position DoF and only one independent velocity DoF.

6 Specify zero as the initial estimate for the crank torque:
uO = 0;
7 Set up the trim command to drive the constraint outputs to 0 :
y0 = [0;0;0;0];
iy $=[1 ; 2 ; 3 ; 4]$;
The y0 array specifies the initial values of the constraint outputs as zero. The iy array specifies that the constraint outputs at the solution point must equal their initial values (0). This ensures that the solution satisfies the mechanical constraints on the system.

Note The four bar system has only constraint outputs. If you were trimming a system with nonconstraint outputs, you would have to include the nonconstraint outputs in the initial output vector.

8 Specify the state derivatives to be trimmed:
dx0 = [0;0;1;0;0;0];
idx = [6];
The dx 0 array specifies the initial derivatives of the four bar system's states. In particular, it specifies that the initial derivative of the crank angle (i.e., the crank angle velocity) is 1 radian/second and all the other derivatives (i.e.,
velocities and accelerations) are 0 . The idx array specifies that the acceleration of the crank at the solution point must be 0 ; i.e., the crank must be moving at a constant velocity. It is not necessary to constrain the accelerations of the other states because the system has only one velocity DoF.

Note The four bar system has only mechanical states. If you were trimming a system that has nonmechanical Simulink states, you would have to include these nonmechanical states in the initial state vector.

9 Trim the system at the initial crank angle to verify that you have correctly set up the trim operation:

```
[x,u,y,dx] = ...
trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);
```

Trim the system over a range of angles.

```
Angle = [];
Input = [];
State = [];
dAngle = 2*pi/10;
Constraint = [];
for i=1:11;
    x0(3) = (i-1)*dAngle;
    x0(6) = 1;
    [x,u,y,dx] = ...
trim('mech_four_bar_trim',x0,u0,y0,ix,[],iy,dx0,idx);
    disp(['Iteration: ', num2str(i), ' completed.']);
    Angle(i) = x0(3);
        Input(:,i) = u;
        State(:,i) = x;
        Constraint(:,i) = y;
        if (i>3),
            uO = spline(Angle,Input,Angle(end) + dAngle);
            x0 = spline(Angle,State,Angle(end) + dAngle);
        else
```

```
        x0 = x;
        uO = u;
    end;
end;
```

10 Plot the results.
figure(1);
plot(Angle, Input);
grid;
xlabel('Angle (rad)');
ylabel('Torque ($\mathrm{N}-\mathrm{m}$)');
title('Input torque vs crank angle');

The following figure shows the resulting plot.

For More Information About Trimming Closed-Loop Systems

The following section, "Linearizing Mechanical Models," contains an example, "Closed-Loop Linearization: Four Bar Machine" on page 8-34, of trimming the system in a different way, searching for the stable natural equilibrium of the four bar mechanism.

Linearizing Mechanical Models

The Simulink linmod command creates linear time-invariant (LTI) state-space models from Simulink models. You can use this command to generate an LTI state-space model from a SimMechanics model, for example, to serve as input to Control System Toolbox commands that generate controller models. The linmod command allows you to specify the point in state space about which it linearizes the model (the operating point). You should choose a point where your model is in equilibrium, i.e., where the net force on the model is zero. You can use the Simulink trim command to find a suitable operating point (see "Trimming Mechanical Models" on page 8-16). By default, linmod uses an adaptive perturbation method to linearize a SimMechanics model. The Machine Environment dialog allows you to require that linmod use a fixed perturbation method instead (see "Analyzing the Motion" on page 5-7). The following examples illustrate the use of linmod to linearize SimMechanics models.

- "Open-Topology Linearization: Double Pendulum" on page 8-29
- "Closed-Loop Linearization: Four Bar Machine" on page 8-34

Consult the Using Simulink documentation for more on linearizing models. You can also enter help linmod at the MATLAB command line.

Restrictions on Linearizing Mechanical Models

There are restrictions on how you linearize mechanical models.

- If you specify any joint primitive initial conditions with Joint Initial Condition Actuator blocks, these initial condition values always override any state vector initial values specified via the linmod command.
Joint primitives with JICA blocks are preferentially chosen for the set of independent states in linearization.
- Avoid incorporating discrete events or motion discontinuities in a linearized model. If you include event- or discontinuity-triggering blocks, ensure that the machine does not induce discontinuities as it moves through the linearized regime you are modeling.
Use of Joint Stiction Actuator blocks in a linearized model causes an error.

Open-Topology Linearization: Double Pendulum

Consider a double pendulum initially hanging straight up and down.

The net force on the pendulum is zero in this configuration. The pendulum is thus in equilibrium.

The following figure shows a SimMechanics model of this pendulum, called mech_dpend_forw.

Linearizing the Model

To linearize this model, enter

```
[A B C D] = linmod('mech_dpend_forw');
```

at the MATLAB command line. This form of the linmod command linearizes the model about the model's initial state.

Note Joint initial conditions specified with IC blocks always override any state vector initial values passed to the linmod command.

The double pendulum model in this example contains no IC blocks. The initial conditions specified with the linmod command are therefore implemented without modification.

Deriving the Linearized State Space Model

The matrices A, B, C, D returned by the linmod command correspond to the standard mathematical representation of an LTI state-space model:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{u}(t) \\
& \boldsymbol{y}(t)=\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} \boldsymbol{u}(t)
\end{aligned}
$$

where \mathbf{x} is the model's state vector, \mathbf{y} is its outputs, and \mathbf{u} is its inputs. The double pendulum model has no inputs or outputs. Consequently, only A is not null. This reduces the state-space model for the double pendulum to

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)
$$

where

| $A=$ | | | |
| :--- | ---: | ---: | ---: | ---: |
| 0 | 0 | 1.0000 | 0 |
| 0 | 0 | 0 | 1.0000 |
| -137.3400 | 39.2400 | 0 | 0 |
| 39.2400 | -19.6200 | 0 | 0 |

This model specifies the relationship between the state derivatives and the states of the double pendulum. The state vector of the LTI model has the same
format as the state vector of the SimMechanics model. The SimMechanics mech_stateVectorMgr command gives the format of the state vector as follows:

```
vm = mech_stateVectorMgr('mech_dpend_forw/G');
vm.StateNames
ans =
    'mech_dpend_forw/J2:R1:Position'
    'mech_dpend_forw/J1:R1:Position'
    'mech_dpend_forw/J2:R1:Velocity'
    'mech_dpend_forw/J1:R1:Velocity'
```

Multiplying \mathbf{A} by the state vector \mathbf{x} yields the differential state equations corresponding to the LTI model of the double pendulum,

$$
\begin{aligned}
& \ddot{\theta}_{1}=-19.62 \cdot \theta_{1}+39.24 \cdot \theta_{2} \\
& \ddot{\theta}_{2}=39.24 \cdot \theta_{1}-137.34 \cdot \theta_{2}
\end{aligned}
$$

where
$\theta_{1}=$ position of top joint (J1)
$\theta_{2}=$ position of bottom joint (J2)
The following Simulink model implements the state-space model represented by these equations.

Modeling the Linearization Error

This model in turn allows creation of a model located in mech_dpend_lin that computes the LTI approximation error.

Running the model twice with the upper joint deflected 2 degrees and 5 degrees, respectively, shows an increase in error as the initial state of the system strays from the pendulum's equilibrium position and as time elapses. This is the expected behavior of a linear state-space approximation.

Closed-Loop Linearization: Four Bar Machine

Control System Toolbox Function This section uses the Control System Toolbox function minreal and assumes that this toolbox is installed on your system. Refer to the Control System Toolbox user's guide for more about this function and state-space analysis.

Linearizing a closed-loop system is more complex than open-topology analysis. Each closed loop in the machine imposes implicit constraints that render some of the degrees of freedom (DoFs) dependent. Linearization of such a system must recognize that not all the DoFs are independent. A straightforward implementation of the linmod command results in redundant system states. You can eliminate these with the minreal function, which finds the minimal state space needed to represent your linearized model. To ensure that minreal produces a nonnull state space, you must linearize a closed-loop system with at least one input u and one output y.
mech_four_bar_lin illustrates this reduction of independent DoFs: of the four revolute joints, only one is an independent DoF, which can be taken as any one of the revolutes. This model defines workspace variables in order to configure the initial geometry of lengths and angles (expressed in the model in meters and radians, respectively). Run the model in Forward Dynamics mode.

Consider a strategy to linearize the model about the four bar's (stable) natural equilibrium. You first find the natural equilibrium configuration, which is best accomplished by analyzing the loop constraints, making a guess, and then using the trim command to determine the equilibrium exactly. After choosing a system input and output, you then linearize the system.

The "Building and Visualizing Simple Machines" chapter presents this system in detail, in the section "A Four Bar Mechanism" on page 2-36. The preceding sections of this chapter, "Kinematics with a Four Bar System" on page 8-7 and "Constrained Trimming of a Four Bar Machine" on page 8-23, discuss the inverse dynamics and trimming of the four bar system.

Analyzing the Four Bar Geometry and Closed-Loop Constraint

You can determine the constraints and independent DoFs of the four bar with geometric and trigonometric identities applied to its quadrilateral shape. The lengths of the bars are l_{1}, l_{2}, and l_{3}, with the fixed base having length l_{4}.

The four joint angles satisfy $\alpha+\beta+\gamma+\delta=2 \pi$. Imagine cutting the quadrilateral diagonally from the α to the γ vertices, then from the β to the δ vertices. The law of cosines applied to these diagonals and the triangles so formed results in two constraints:

$$
\begin{aligned}
& l_{1}^{2}+l_{2}^{2}-2 l_{1} l_{2} \cos \gamma=l_{3}^{2}+l_{4}^{2}-2 l_{3} l_{4} \cos \alpha \\
& l_{2}^{2}+l_{3}^{2}-2 l_{2} l_{3} \cos \beta=l_{1}^{2}+l_{4}^{2}-2 l_{1} l_{4} \cos \delta
\end{aligned}
$$

The four angles are thus subject to three constraints. Choose α (the crank angle) as the independent DoF. You can determine β, γ, and δ from α by inverting the constraints.

Determining the Natural Equilibrium with trim

Finding the natural equilibrium with the trim command requires first guessing the equilibrium. An obvious guess for the natural equilibrium is for the crank (Bar 3) to point straight down, $\alpha=-90^{\circ}$. Use the quadrilateral constraints to find $\beta=310.1^{\circ}, \gamma=60.3^{\circ}$, and $\delta=79.6^{\circ}$. Redefine the workspace angles to these values (converted to radians).

```
alpha = -90*pi/180; beta = 313.2*pi/180; gamma = 60.3*pi/180;
delta = 76.5*pi/180;
beta2 = pi - gamma - delta; delta2 = pi - delta;
```

Update the diagram and run the model again. This configuration is not the natural equilibrium, but it is close.

Now find the natural equilibrium by trimming the four bar in a manner similar to the procedure of "Constrained Trimming of a Four Bar Machine" on page $8-23$, but without external torque actuation. Revolute1 is already manually configured to be the cut joint in the closed loop. This ensures that the DoF represented by Revolute4 is not eliminated from state space when the loop is cut.

1 Set the analysis mode to Trimming. This causes SimMechanics to insert a subsystem and an output block that outputs a four-component signal representing the mechanical constraints resulting from the closed loop.

2 Use mech_stateVectorMgr to obtain the system's state vector:
StateManager = ...
mech_stateVectorMgr('mech_four_bar_lin/Ground_2');
StateManager.StateNames
ans =
'mech_four_bar_lin/Revolute2:R1:Position'
'mech_four_bar_lin/Revolute3:R1:Position'
'mech_four_bar_lin/Revolute4:R1:Position'
'mech_four_bar_lin/Revolute2:R1:Velocity'
'mech_four_bar_lin/Revolute3:R1:Velocity'
'mech_four_bar_lin/Revolute4:R1:Velocity'
Revolute 1 is the cut joint and is missing from the list. States 1,2 , and 3 are the revolute 2,3 , and 4 angles, respectively; while states 4,5 , and 6 are the revolute 2,3 , and 4 angular velocities, respectively.

3 Set up the necessary trimming vectors.

```
x0 = [0;0;0;0;0;0];
ix = [];
uO = [];
iu = [];
y0 = [0;0;0;0];
iy = [1;2;3;4];
dx0 = [0;0;0;0;0;0];
idx = [3;6];
```

The x 0 vector tells the trim command to start its search for the equilibrium with the four bar in its initial configuration (the equilibrium guess you entered into the workspace previously) and with zero angular velocities. The index vector ix sets the states that, in the actual equilibrium, should keep the values specified in $x 0$. Here there are none.

The $u 0$ and iu vectors specify system inputs, but there are none.
The y0 vector sets the initial values of the constraint outputs to zero. The index vector iy requires that the constraint outputs at equilibrium be equal to their initial values (0). This ensures that the solution satisfies the mechanical constraints.

The dx 0 vector specifies the initial state derivatives. The initial derivatives of the angles (i.e., the angular velocities) and of the angular velocities (i.e., the angular accelerations) are set to zero. The index vector idx specifies that the velocity and acceleration of Revolute 4 in the natural equilibrium must vanish. It is not necessary to constrain the derivatives of the other states because the system has only one independent DoF.

4 Now trim the system:

```
[x,u,y,dx] = ...
trim('mech_four_bar_lin',x0,u0,y0,ix,iu,iy,dx0,idx);
```

The u vector is empty. The components of y and $d x$ vanish, within tolerances, indicating that in equilibrium, respectively, the mechanical constraints are satisfied and the state derivatives vanish. The last three components of x
vanish, indicating zero angular velocities at equilibrium. The first three components of x represent the natural equilibrium angles (in radians), measured as deviations from the initial configuration. The Revolute4 angle is $-0.2395 \mathrm{rad}=-13.7^{\circ}$ from the starting point.
From x, you can calculate all the angle values. The natural equilibrium is α_{eq} $=-90^{\circ}-13.7^{\circ}=-103.7^{0}, \beta_{\mathrm{eq}}=310.1^{\circ}+13.0^{\circ}=323.1^{0}, \gamma_{\mathrm{eq}}=60.3^{\circ}+2.5^{0}=62.8^{\circ}$, and $\delta_{\text {eq }}=360^{\circ}-\alpha_{\text {eq }}-\beta_{\text {eq }}-\gamma_{\text {eq }}=74.7^{\circ}$.

Linearizing the Model at the Natural Equilibrium

Reset the angles in your workspace to the natural equilibrium point:

```
alpha = alpha + x(3); beta = beta + x(2); gamma = gamma + x(1);
delta = 2*pi - alpha - beta - gamma;
beta2 = pi - gamma - delta; delta2 = pi - delta;
```

Then change the analysis mode back to Forward Dynamics and update the diagram. Run the model to check that the mechanism indeed does not move.

To obtain a nontrivial linearized model, you need at least one input and one output. Connect a Joint Actuator to Revolute 4 to actuate it with a torque. Then insert Simulink Inport and Outport blocks to input the torque and measure the angular velocity.

Set the input torque to zero and the initial state to the model's initial configuration, the natural equilibrium:

$$
u=0 ; x=[0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
$$

Then linearize the model and use minreal to eliminate the redundant states:

$$
\begin{aligned}
& {[A, B, C, D]=\operatorname{linmod}\left(' m e c h _f o u r _b a r _l i n ', x, u\right) ;} \\
& {[a, b, C, d]=\operatorname{minreal}(A, B, C, D) ;}
\end{aligned}
$$

leaving two states, α and $\mathrm{d} \alpha / \mathrm{dt}$. The component $\alpha(2,1)=-80.0873<0$, indicating that this natural equilibrium is stable. The linearized motion is governed by $\mathrm{d}^{2} \alpha / \mathrm{dt}^{2}=\alpha(2,1)^{*} \alpha$.

See "Open-Topology Linearization: Double Pendulum" on page 8-29 for more about the linearized state space representation.

SimMechanics Block Reference

This chapter contains complete information on every block in SimMechanics. Refer to this chapter

 when you need to find detailed information on a particular block.Blocks - Categorical List (p. 9-2) The SimMechanics blocks summarized by block library
Blocks - Alphabetical List (p. 9-6) The SimMechanics blocks listed alphabetically by name

Blocks - Categorical List

This section consists of the block library hierarchy, a structured list of the SimMechanics libraries; and the block library contents, a listing of all SimMechanics blocks arranged by library.

Use the Simulink Library Browser or the SimMechanics library to access the blocks directly, guided by this hierarchical library list. The subsequent pages contain reference information for all blocks in SimMechanics, arranged by library and in alphabetical order by block name.

Bodies Library

Blocks representing rigid bodies, ground points, and mechanical environment

Joints Library

Blocks representing relative motion degrees of freedom (DoFs) between bodies

Disassembled Joints Sublibrary

Blocks representing initially misaligned DoFs between bodies
Massless Connectors Sublibrary
Blocks representing rigidly separated DoF pairs between bodies

Constraints \& Drivers Library

Blocks to restrict or externally drive relative DoFs between bodies

Sensors \& Actuators Library

Blocks to initiate and measure motion, and to interface between SimMechanics and Simulink

Force Elements Library

Blocks to model forces/torques between bodies

Utilities Library

Additional useful blocks for modeling and simulating machines

Demos Library

Simulink model files with SimMechanics blocks. Online Help users can click this library name to browse the demos.

Modeling Machines, Bodies, and Grounds

Body
Ground
Machine Environment

Customizable rigid body
Immobile point at rest in World
Mechanical environment

Modeling Degrees of Freedom

Modeling Assembled Joints

Bearing
Bushing

Custom Joint

Cylindrical

Gimbal
In-Plane
Planar
Prismatic
Revolute
Screw

Six-DoF
Spherical
Telescoping

Composite: one prismatic, three revolutes
Composite: three prismatics, three revolutes

Customizable composite joint: up to three translational and three rotational DoFs

Composite: one prismatic, one revolute (axes aligned)

Composite: three revolutes
Composite: two prismatics
Composite: two prismatics, one revolute
Primitive: one translational DoF
Primitive: one rotational DoF
Composite: one prismatic, one revolute (constrained)

Composite: three prismatics, one spherical
Primitive: three rotational DoFs at pivot
Composite: one prismatic, one spherical

Universal	Composite: two revolutes
Weld	Primitive: no DoFs (rigid)
Modeling Disassembled Joints	
Disassembled Cylindrical	Misaligned translational-rotational DoFs
Disassembled Prismatic	Misaligned translational DoF
Disassembled Revolute	Misaligned rotational DoF
Disassembled Spherical	Dislocated spherical DoF
Modeling Massless Connectors	
Revolute-Revolute	Composite: revolute separated revolute
Revolute-Spherical	Composite: revolute separated spherical
Spherical-Spherical	Composite: spherical separated spherical

Constraining and Driving Motion

Angle Driver	Specify angle between two body axes as function of time
Distance Driver	Specify distance between two body CS origins as function of time
Gear Constraint	Constrain two bodies rotating along two tangent pitch circles
Linear Driver	Specify vector component between two Body CS origins as function of time
Parallel Constraint	Constrain two body axes to be parallel
Point-Curve Constraint	Constrain motion of one body along curve on another body
Velocity Driver	Specify projected linear and angular velocities of two bodies as a function of time

Actuating and Sensing Motion

Body Actuator	Apply force/torque or motion to a body
Body Sensor	Measure body motion
Constraint \& Driver Sensor	Measure constraint force/torque between pair of constrained bodies
Driver Actuator	Apply motion to pair of constrained bodies
Joint Actuator	Apply force/torque or motion to a joint primitive
Joint Initial Condition Actuator	Apply initial positions and velocities to Joint primitives
Joint Sensor	Measure joint motion and force/torque
Joint Stiction Actuator	Apply friction to joint primitive
Variable Mass \& Inertia	Vary the mass and inertia on a body (does
Actuator	not include thrust force or torque)

Applying Force Elements

Body Spring \& Damper

Joint Spring \& Damper

Model damped linear oscillator force between two bodies

Model damped linear oscillator force or torque on a joint between two bodies

Additional Useful Blocks

Connection Port Connector port for a subsystem
Continuous Angle Convert bounded angular signals to unbounded signals

Mechanical Branching Bar

RotationMatrix2VR
Map multiple sensor/actuator lines to one sensor/actuator port

Convert rotation matrix to rotation axis and angle

Blocks - Alphabetical List

This section contains detailed references pages for each of the blocks in SimMechanics.

Angle Driver

Purpose

 LibraryDescription

Specify the angle between two body axis vectors as a function of time

Constraints \& Drivers

The Angle Driver block drives axis vectors defined on two Bodies. You specify fixed base and fixed follower body axis vectors $\mathbf{a}_{\mathrm{B}}, \mathbf{a}_{\mathrm{F}}$ in the Body CS on either side of the Driver on each body, then drive the angle between the body axis vectors as a function of time.

The Angle Driver block specifies the angle θ defined by

$$
\cos \theta=\left|\mathbf{a}_{\mathrm{B}}{ }^{*} \mathbf{a}_{\mathrm{F}}\right| /\left(\left|\mathbf{a}_{\mathrm{B}}\right|\left|\mathbf{a}_{\mathrm{F}}\right|\right)
$$

as a function of time: $\theta=\theta(t=0)+f(t)$. You connect the Angle Driver to a Driver Actuator block.

The Simulink input signal into the Driver Actuator specifies the time-dependent driving function $f(t)$ and its first two derivatives, as well as their units. If you do not actuate Angle Driver, this block acts as a time-independent constraint that freezes the angle between the two body axes at its initial value $\theta(t=0)$ during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of bodies as specified functions of time. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Driver blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Drivers are ordered as base and follower, fixing the direction of relative motion.

Note If the two axes come close to aligning, that is, if θ approaches zero, the constraint between the two axes becomes singular, and the simulation slows down. See "How SimMechanics Works" on page 5-14 and "Handling Motion Singularities" on page 5-9.

You can also connect a Constraint \& Driver Sensor to any Driver measure the reaction forces/torques between the driven bodies.

Angle Driver

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the Angle Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Angle Driver base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Angle Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Angle Driver base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Driver Actuator and Constraint \& Driver Sensor blocks to this Driver. The default is 0 .

To activate the Driver, connect a Driver Actuator.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower rotating in the right-handed sense about the rotation axis.

Angle Driver base and follower Body connector ports

Parameters Fixed axis

For the Base and Follower bodies, respectively, enter the body axis vectors. The defaults are [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the Base and Follower body axis vectors are oriented with respect to. This CS also determines the absolute meaning of reaction forces/torques at this Driver. The defaults are WORLD.

See Also Constraint \& Driver Sensor, Driver Actuator, Parallel Constraint, Velocity Driver

See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Drivers.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using drivers in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Purpose	Represent a composite joint with one translational and three rotational DoFs
Library	Joints
Description	The Bearing block represents a composite joint with one translational degree of freedom (DoF) as one prismatic primitive and three rotational DoFs as three revolute primitives. There are no constraints among the primitives. Unlike Telescoping, Bearing represents the rotational DoFs as three revolutes, rather than as one spherical.

Caution A joint with three revolute primitives becomes singular if two or three of the rotation axes become parallel ("gimbal lock"). The simulation stops with an error in this case.

A joint with three revolute primitives must be configured in the initial state with the three revolute primitive axes mutually orthogonal. There are no restrictions on the primitive axes once the simulation starts, except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Bearing block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

Note Bearings are often represented by one translational and one rotational DoF. The Bearing block has three rotational degrees of freedom, rather than one, in order to represent transverse "play" in the joint.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Dialog Box and Parameters

-) Block Parameters : Bearing				- \square
Description Represents three rotational and one translational degrees of freedom. The Follower (F) rotates around three primitive revolute axes ($\mathrm{R} 1, \mathrm{R} 2$, R3) and translates along one primitive prismatic axis P 1 with respect to the Base (B) Body. Axis P1 must be parallel to axis R3. R1 attached to Base. P1 attached to Follower. Listed order of primitives is order of motion during simulation. Sensor and actuator ports can be added. Base-Follower sequence and axes directions determine sign of forward motion. This joint becomes singular if two revolutes align.				
$\left[\begin{array}{ll}\text { Connection parameters } & \\ \text { Current base: } & \text { snot connected } \\ \text { Current follower: } & \text { snot connected } \\ \text { Number of sensor / actuator ports: } & 0 \text { 者 }\end{array}\right.$				
[Parameters				
Axes Advanced				
Name	Primitive	Axis of action [xyz]	Referenc	csys
R1	Revolute	[100]	WORLD	-
R2	Revolute	[010]	MORLD	\checkmark
R3	Revolute	[001]	WORLD	\checkmark
P1	Prismatic	[001)	WORLD	-
OK		Cancel	Help	Apply

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the Bearing block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Bearing base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive R1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Bearing block to a Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following "Bearing base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive P1 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motions of prismatic and revolute primitives are specified in linear and angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Base Body connector port

Bearing base and follower Body connector ports

Parameters

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Bearing has an entry line. These lines specify the direction of the axes of action of the DoFs that the Bearing represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Bearing block: revolute primitives R1, R2, R3, and prismatic primitive P1.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

Bearing

- Prismatic: axis of translation
- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
I Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Bushing, Cylindrical, Gimbal, Prismatic, Revolute
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose
Represent a customizable rigid body

Library Bodies

Description representation you specify includes:

- The body's mass and moment of inertia tensor

The Body block represents a rigid body whose properties you customize. The

- The coordinates for the body's center of gravity (CG)
- One or more Body coordinate systems (CSs)

A rigid body is defined in space by the position of its CG (or center of mass) and its orientation in some CS.

Setting Body Initial Conditions The initial position and orientation of a body are set by the entries in its Body dialog. These initial conditions remain unchanged, unless, with a Joint Initial Condition Actuator, you change the initial conditions of the Joint(s) connected to the Body prior to starting the simulation, or you actuate the Body with a Body Actuator.

Geometric and Mass Properties Define a Body

In SimMechanics, you enter the body's properties in two classes, the geometric properties and the mass properties:

- The geometric properties are defined by the body's Body CSs.
- The CS with its origin at the CG is required. The CG point specifies both the initial position of the whole body and the origin of the CG CS. You must also orient the CG CS axes.
- You can place one or more additional Body CSs on a body. The Body dialog requires at least one. You must define each Body CS by the position of its origin and the orientation of its CS axes.
- Each connection of a Joint, Constraint/Drive, Actuator, or Sensor block to a Body requires an anchor point on the Body. This anchor point is one of the Body CS origins.
- Body CSs on the block available for connections are shown by Body CS ports (on the sides of the block. You can show or hide each Body CS on the block sides.
- The set of a body's Body CS origins (including the CG CS) defines the body's convex hull, one of the visualization shapes available for representing a body in space.
- The mass properties are defined by the body's mass and inertia tensor.
- The mass is the body's inertia and controls the translational acceleration of the CG in response to an applied force.
- The inertia tensor measures the distribution of mass density in the body and controls the rotational acceleration of the body about the CG in response to an applied torque.
- The components of the inertia tensor control the initial orientation of the body and are always interpreted as being in the CG CS axes. The orientation of the CG CS axes with respect to another CS external to the body (the World CS, a CS on a Ground, or a CS on another Body) then determines the orientation of the body with respect to other bodies or with respect to World.
- The body's inertia tensor defines its principal axes and moments and its equivalent ellipsoid, one of the visualization shapes available for representing a body in space.

Default Initial State of a Body

These two properties determine a body's initial position and orientation:

- The position of a body's CG sets its initial position.
- The body's inertia tensor components (in the CG CS) and the orientation of the CG CS axes with respect to other CSs in the machine set its initial orientation.

The initial conditions of a machine can be changed with Joint Initial Condition Actuator blocks before you start a simulation. If you do not change the initial state of a Body before simulation, SimMechanics sets its initial position and orientation to its Body dialog box entries. SimMechanics also sets the Body's initial linear/angular velocities to zero in this case.

Dialog Box and Parameters

The dialog box has two active areas, Mass Properties and Body Coordinate Systems.

Mass
 Properties

Mass

Enter the mass of the body in the first field and choose units in the pull-down menu to the right. The mass must be a positive, real number or MATLAB equivalent expression. The defaults are 1 and kg (kilograms).

Inertia tensor

Enter the inertia tensor (with respect to the Body CG CS axes) in the first field and choose units in the pull-down menu to the right. The tensor must be a 3 -by- 3 real, symmetric matrix. The default tensor is eye (3), the MATLAB 3-by-3 identity matrix. A zero tensor zeros $(3,3)$ defines a point mass. The units default is $\mathrm{kg}-\mathrm{m}^{2}$ (kilograms-meters ${ }^{2}$).

Configuring a Body Coordinate System

You set up Body CSs in the Body coordinate systems area:

- The default configuration consists of three Body CSs: the required CG CS attached to the body's CG and two other optional Body CSs, called "CS1" and "CS2", for connecting Joints, Constraints, or Drivers.
- You can configure the CG CS but not delete it. You also cannot create additional CG CSs, although you can duplicate the CG CS with a different name. (See following.)
- The other CSs can be configured or deleted as you want, keeping at least one.
- Configuring a Body CSs requires two groups of steps:
- positioning the Body CS origin in the Position panel
- orienting the Body CS axes in the Orientation panel.
- Defining Body CSs requires referring to other, pre-existing CSs in the model. In a given Body block, you can refer to Body and Grounded CSs in three ways. The references must be to:
- World
- Other Body CSs on the same body
- The Adjoining CS, the coordinate system on a neighboring body or ground directly connected to the selected Body CS by a Joint, Constraint, or Driver.

- You must directly or indirectly define all Body CSs by reference to a Ground or to World. With indirect reference, you specify a Body CS relative to another CS and so on, in a chain of references that ultimately ends in a

Ground or World. The CS reference chains of the Position and Orientation panels can be different. The CS reference chains must not form a closed cycle.

- Toggle between the Position or Orientation panels with the tabs.

Each Body CS is labeled with a name, CG for the CG CS, and CS1, CS2, etc., for additional CSs.

Configuring the Position Fields

The Position fields for each Body CS specify the position of that CS's origin as a translation vector:

- The numerical components of the vector carry units.
- The origin is displaced from the origin of another, pre-existing CS in your machine by this translation vector.
- The translation vector's components are oriented with respect to another set of CS axes.
Highlight each Body CS to configure it.

Origin position vector [x y z]

Enter the translation vector that defines the position of the Body CS's origin.
The special entry for the CG CS origin places the entire body.

Units

Choose linear units for the translation vector. The default is m (meters).

Translated from the origin of

In the pull-down menu, choose the other, pre-existing CS in your machine that defines the starting point for the translation vector. The choices are WORLD, ADJOINING, and the other Body CSs on this Body. The ending point of the translation vector is this Body CS's origin.

For the CG CS, the default starting-point CS is WORLD. For the additional Body CSs (CS1, CS2, etc.), the default starting point CS is this Body's CG.

Components in the axes of

In the pull-down menu, choose the CS whose axes define the orientation of the translation vector's components. The choices are WORLD, ADJOINING, and the other Body CSs on this Body. The translation vector's components are measured relative to the axes of the CS chosen in this column.

For the CG CS, the default orientation CS is WORLD. For the additional Body CSs (CS1, CS2, etc.), the default orientation CS is this Body's CG.

Configuring the Orientation Fields

The Orientation fields for each Body CS specify the orientation of that CS's triad of axes as a rotation:

- The orientation vector specifying the rotation vector has three components.
- The numerical components of the vector carry units.
- The rotation is oriented with respect to some other, pre-existing set of CS coordinate axes in your machine.
- The orientation vector's components are interpreted in the convention of a rotation representation.
Highlight each Body CS to configure it.

Orientation vector

Enter the components of the rotation that defines the orientation of the Body CS's axes. The geometric meaning of these components is determined by the Specified using convention column.

The special entry for the CG CS orients the CG CS axes. Together with the Inertia tensor entry in Mass properties, the CG CS axes orient the whole body with respect to another CS in your machine.

Units

Choose angular units for the rotation, degrees or radians. The default is deg (degrees).

Relative to coordinate system

In the pull-down menu, choose one of the other preexisting CSs in your machine to define the starting orientation for the rotation. The choices are WORLD, ADJOINING, and the other Body CSs on this Body.

Specified using convention

In the pull-down menu, choose the representation type for the rotation:

Rotation Type	Orientation Vector Components
Quaternion	$\left[n_{x}{ }^{*} \sin (\theta / 2) n_{y}{ }^{*} \sin (\theta / 2) n_{z}{ }^{*} \sin (\theta / 2) \cos (\theta / 2)\right]$

Rotation Type	Orientation Vector Components (Continued)
3x3Transform	3-by-3 orthogonal rotation matrix R
Euler	Rotation angles about $[X$ axis Y axis Z axis $]$

Rotation Conventions

There are three conventions in a Body block for representing rotations:

- Euler

The Euler angle convention specifies the rotation of the Body CS axes by rotating about three axes in a sequence. The components of the 1-by-3 row vector are the angles of rotation about the X, Y, and Z axes, respectively, in degrees or radians.
For example, Euler $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ means rotate about the original X axis, then about the first intermediate Y axis, and then about the second intermediate Z axis. Another example: Euler X-Z-Y means rotate about the original X axis, then about the first intermediate Z axis, and then about the second intermediate Y axis.

- 3-by-3 Transform

The transform convention specifies the rotation as a dimensionless 3-by-3 orthogonal rotation matrix. The inverse of an orthogonal matrix R is equal to its transpose: $R^{-1}=R^{\mathrm{T}}$.
The columns of R are the (x, y, z) unit vectors of the Body CS axes. The units menu is inactive.

- Quaternion

The quaternion convention specifies the rotation in angle-axis form as a dimensionless 1-by-4 row vector:

$$
\left[n_{x}{ }^{*} \sin (\theta / 2) \quad n_{y}{ }^{*} \sin (\theta / 2) \quad n_{z}{ }^{*} \sin (\theta / 2) \quad \cos (\theta / 2)\right]
$$

$\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ is a three-component vector of length unity: $\mathbf{n} * \mathbf{n}=n_{x}{ }^{2}+n_{y}{ }^{2}+$ $n_{z}{ }^{2}=1$.

The unit vector \mathbf{n} specifies the axis of rotation. The rotation angle about that axis is θ and follows the right-hand rule.

See "Body Motion in SimMechanics" on page 3-3 and "How SimMechanics Represents Body Orientation" on page 3-9 to learn more about rotations.

Managing the Body Coordinate Systems List

The Body coordinate system controls (see the following "Body coordinate systems controls" figure) allow you to add, duplicate, reorder, and delete Body CSs on a Body block:

- To add a Body CS to the list,
- Highlight an existing Body CS in the list.
- Click the Add button (see the following "Body coordinate systems controls" figure).
A new Body CS appears immediately below the Body CS you highlighted. New Body CSs are named in sequence after the current ones: CS3, CS4, etc.
- To duplicate a Body CS in the list,
- Highlight the Body CS you want to duplicate.
- Click on the Duplicate button (see the following "Body coordinate systems controls" figure).
A new Body CS with the same configuration but a different name will appear immediately below the Body CS you highlighted. New Body CSs are named in sequence after the current ones: CS3, CS4, etc.
- To change the position of a Body CS in the list:
- Highlight the Body CS whose position you want to change.
- Click on the Up or Down button (see the following "Body coordinate systems controls" figure) until the Body CS is where you want it.
- To delete a Body CS from the list:
- Highlight the Body CS you want to delete.
- Click on the Delete button (see the following "Body coordinate systems controls" figure).
The Body CS you highlighted disappears.
- You cannot delete the Body's CG CS or the last one of the non-CG CSs.

Body coordinate systems controls

Managing Body CS Ports on a Body Block

To connect a Joint，Constraint，Driver，Actuator，or Sensor block to a Body block requires an existing and configured Body CS on that Body：
－These other blocks define，constraint，impart，and measure the motion of bodies with respect to the origin and coordinate axes of Body CSs．Connect each of these blocks to a Body CS with a connection line．
－The actual connection line running from the other block to the Body block must be anchored to a displayed Body CS Port ⿴囗才 on the side of the Body block in the model window．

－A displayed Body CS Port on a Body block indicates a Body CS with the displayed name configured internally within the Body block．

- Not all the Body CSs configured inside a Body block need to be displayed, however.
See the "Body coordinate systems controls" figure preceding.

Show port

Select this check box for any Body CS to create a corresponding Body CS Port 龱 on the side of the Body block. The Body CS on that line in the Body CS list is now accessible for connection to other blocks.

Unselect this check box to remove the Body CS Port corresponding to that Body CS on that line in the list.

The defaults are: unselected for CG, selected for CS1 and CS2.
To apply your choices to the displayed Body block, click Apply.

Port side

From the pull-down menu, choose which side of the Body block you want the Body CS Port for that Body CS to be placed on, Left or Right.

The defaults are Left for CG and CS1 and Right for CS2.
To apply your choices to the displayed Body block, click Apply.
See Also
Body Actuator, Body Sensor, Body Sensor, Ground, Mechanical Branching Bar
See "Body Motion in SimMechanics" on page 3-3 and "How SimMechanics Represents Body Orientation" on page 3-9 for more details about representing body position and orientation.

See "Modeling Bodies and Grounds" on page 4-8, "Creating Body CS Ports" on page 4-16, and "Starting SimMechanics Visualization" on page 6-2 for more on setting up Bodies in machines.

See "Modeling Actuators" on page 4-42 for setting general initial conditions (positions and velocities) of DoFs in a machine.

See the relevant entries in the Glossary: adjoining CS, axis-angle rotation, body, Body CS, center of gravity (CG), convex hull, coordinate system (CS), equivalent ellipsoid, Euler angles, inertia tensor, mass, principal axes, principal inertial moments, quaternion, right-hand rule, and rotation matrix.

Body Actuator

Purpose Apply force/torque to a body

Library Sensors \& Actuators
Description

The Body Actuator block actuates a Body block with a generalized force signal, representing a force/torque applied to the body:

- Force for translational motion
- Torque for rotational motion

The generalized force is a function of time specified by a Simulink input signal. This signal can be any Simulink signal, including a signal feedback from a Sensor block.

The Body Actuator applies the actuation signal in the reference coordinate system (CS) specified in the block dialog box.

The inport is the Simulink input signal. The output is the connector port you connect to the Body block you want to actuate.

You should carefully distinguish the Body Actuator from the Driver blocks:

- The Body Actuator block applies generalized forces to one body in a specified reference CS.
- The Driver blocks drive relative degrees of freedom between pairs of bodies.

Other Ways to Actuate Bodies

The Body Actuator block actuates a Body with force/torque signals only. To actuate a Body with motion signals or initial conditions, or to drive the relative degrees of freedom between a pair of Bodies, see "Actuating a Joint" on page 4-47 and "Joint Actuator Example: Body Driver" on page 4-49.

The mech_body_driver model from the Demos library shows how to drive the relative DoFs between a pair of bodies. To actuate one body alone, use this model and replace the second Body block with a Ground block. To set body initial conditions, replace the second Body block with a Ground block and the Joint Actuators with Joint Initial Condition Actuators.

Body Actuator

Dialog Box and Parameters

Actuation

Generalized Forces

The dialog box has one active area, Actuation.

Actuating body at coordinate system

This field is not active. You choose the Body CS at which to apply the actuation by connecting it to the Body Actuator.

Using reference coordinate system

In the pull-down menu, choose the coordinate system (CS) in which the actuating force/torque is interpreted: either the Local (Body CS) to which the Actuator is connected or the default Absolute (World).

You can apply a force, a torque, or both generalized forces to a body.
If you apply both, you need to bundle the torque and force vectors into a 6 -component signal, in the order shown in the dialog box.

Apply torque

Select the check box if part or all of the actuating signal is a rotational torque. The default is unselected. The Simulink torque input is a 3 -component bundled signal.

In the pull-down menu, choose units for the actuating torque. The default is $\mathrm{N}-\mathrm{m}$ (Newton-meters).

Body Actuator

Apply force

Select the check box if part or all of the actuating signal is a translational force. The default is selected. The Simulink force input is a 3-component bundled signal.

In the pull-down menu, choose units for the actuating force. The default is N (Newtons).

Example

See Also
Body, Body Sensor, Driver Actuator, Joint Actuator, Joint Initial Condition Actuator, Mechanical Branching Bar

See "Body Motion in SimMechanics" on page 3-3 for more details on body coordinate system rotations.

See "Actuating a Joint" on page 4-47 and "Joint Actuator Example: Body Driver" on page 4-49.

See "Modeling Machines, Bodies, and Grounds" on page 9-3 and "Constraining and Driving Motion" on page 9-4.

In Simulink, see the Signal Routing Library and the Sources Library.

Purpose
Library
Description

Measure body motion
Sensors \& Actuators
The Body Sensor block detects the position, velocity, and/or acceleration of a body represented by a Body block.

The Body Sensor measures the motion in the reference coordinate system (CS) specified in the block dialog box.

You can measure one, two, or all three of these motion types:

- Translational motion of a body, in terms of linear position, velocity, and/or acceleration vectors
- Rotational motion of a body, in terms of angular velocity and/or acceleration vectors
- Rotational motion of a body, in terms of a 3-by-3 rotation matrix R

The input is the connector port connected to the Body being sensed. The outport is a set of Simulink signals or one bundled Simulink signal of the position, velocity, and/or acceleration vector(s) and/or the rotation matrix of the body.

A body's orientation rotation matrix R relates vector components measured in the body CS and in the inertial World CS by $[R] \cdot \mathbf{v}_{b}=\mathbf{v}_{s}$. The column vector \mathbf{v}_{b} lists the vector v's three components measured in the body CS. The column vector \mathbf{v}_{s} lists the vector v's three components measured in the World CS.
See "Body Motion in SimMechanics" on page 3-3 and "How SimMechanics Represents Body Orientation" on page 3-9 for more details on representing body position and orientation, including angular velocity and rotation matrices.

Dialog Box and Parameters

The dialog box has one active area, Measurements.

Measurements Measuring Body coordinate system

This field is not active. You choose the Body CS at which to measure the motion by connecting it to the Body Sensor.

With respect to coordinate system

In the pull-down menu, choose the coordinate system in which the body motion is measured: either the Local (Body CS) to which the Sensor is connected or the default Absolute (World).

In the Absolute case, the rotation matrix R and the motion vectors have components measured relative to the inertial World CS axes. In the Local case, the same body motion signals are premultiplied by the body's inverse orientation rotation matrix $R^{-1}=R^{\mathrm{T}}$.

Select the check box for each of the possible measurements you want to make:

- Linear motion: Position, Velocity, and Acceleration vectors
- Angular motion: Angular velocity and Angular acceleration vectors and Rotation matrix:
- The Rotation matrix is the 3-by-3 orthogonal rotation matrix R :
$\left[\begin{array}{lll}R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33}\end{array}\right]$
representing rotational orientation and satisfying $R^{\mathrm{T}} R=R R^{\mathrm{T}}=I$. The components are output columnwise as a 9 -component row vector: (R_{11}, $R_{21}, R_{31}, R_{12}, \ldots$.
- If you choose the With respect to coordinate system as Absolute (World), the Rotation matrix measures the body's rotational orientation with respect to the World CS. If you choose the With respect to coordinate system above as Local (Body CS), the Rotation matrix returns the 3 -by- 3 identity matrix $R^{\mathrm{T}} R=I$.
Each vector measurement is a row vector in the Simulink output signal. The selected signals are ordered in the same sequence as the dialog box.

In the pull-down menus, choose the units for each of the measurements you want:

- Linear motion: the defaults are m (meters), m / s (meters/second), and $\mathrm{m} / \mathrm{s}^{2}$ (meters/second ${ }^{2}$), respectively, for Position, Velocity, and Acceleration.
- Angular motion: the defaults are deg/s (degrees/second) and deg/s ${ }^{2}$ (degrees/second ${ }^{2}$), respectively, for Angular velocity and Angular acceleration. The Rotation matrix is dimensionless.

Output selected parameters as one signal

Select this check box to convert the output signals into a single bundled signal. The default is selected. If you unselect it, the Body Sensor block will grow as many Simulink outports as there are active signals selected, in the same order, top to bottom, as in the dialog box.
If the check box is selected, the Simulink signal out has all the active (selected) signals ordered into a single row vector, in the same order you see
in the dialog box. Unselected components are removed from the vector signal.

Example

See Also

Here is a Body Sensor connected to a Body:

You must connect the Body Sensor to the Body at one of that Body's attached Body CSs, at the corresponding Body CS Port. The sensor measures the motion of that Body CS.

Body, Body Actuator, Constraint \& Driver Sensor, Joint Sensor, Mechanical Branching Bar

See "Body Motion in SimMechanics" on page 3-3 and "How SimMechanics Represents Body Orientation" on page 3-9 for more details on representing body position and orientation.

See "Modeling Sensors" on page 4-63.
See the relevant entries in the Glossary about body orientation: axis-angle rotation, Euler angles, right-hand rule, and rotation matrix.

In Simulink, see the Signal Routing Library and the Sinks Library.

Body Spring \& Damper

Purpose
Models a damped linear oscillator force between two bodies
\section*{Library Force Elements}
Description

The Body Spring \& Damper block models the force of a damped spring acting between two bodies. By Newton's third law, the spring applies equal and opposite forces to the two bodies. You can use this Force Element block to model any linear (Hooke's law) force, with constant coefficients, that acts between a pair of bodies. One of the Bodies can be a Ground.

Caution Both the spring and the damper force act only along the axis connecting the two bodies.

The Body Spring \& Damper block does not include the degree of freedom (DoF) needed to model the relative motion of the connected bodies. You need to add a Joint block between the Bodies to represent one, two, or three prismatic primitives. You can use Prismatic blocks or a Custom Joint block to accomplish this. The Body Spring \& Damper block and Joints block must form a closed loop together with the two Bodies.

Body Spring and Damper Theory

You connect this block to each Body, A or B, at a Body coordinate system (CS). If $\boldsymbol{r}_{\mathrm{A}}$ and $\boldsymbol{r}_{\mathrm{B}}$ are the positions of these Body CSs, the relative position vector connecting them is $\boldsymbol{r}=\boldsymbol{r}_{\mathrm{B}}-\boldsymbol{r}_{\mathrm{A}}$. The distance of separation is $|\boldsymbol{r}|$. The relative velocity is $\boldsymbol{v}=\mathrm{d} \boldsymbol{r} / \mathrm{dt}$. Then the vector force that body A exerts on body B is

$$
\boldsymbol{F}=-k\left(|\boldsymbol{r}|-r_{0}\right)(\boldsymbol{r} /|\boldsymbol{r}|)-b\left(\boldsymbol{v}^{*} \boldsymbol{r}\right)\left(\boldsymbol{r} /|\boldsymbol{r}|^{2}\right)
$$

The first term represents the spring or linear displacement force. The second represents the damper or velocity dissipation force, which acts only along the direction of \boldsymbol{r}. Thus the damper is equivalent to a dashpot, not a viscous medium.

You specify the spring constant k, the natural spring length (offset) r_{0}, and the damping constant b. The natural length is the length of the spring with no forces acting on it and physically must be nonnegative: $r_{0} \geq 0$. A stable spring requires $k>0$. A damping representing dissipation and respecting the second

Body Spring \& Damper

law of thermodynamics requires $b \geq 0$. You can use a negative b to represent energy pumping.

The Spring and Damper Force in Singular Cases

In certain cases, the force formula breaks down, and SimMechanics uses special rules to determine the force.

- If r_{0} and $\boldsymbol{v} \neq 0$, and $\boldsymbol{r}=0$ at some instant, both terms in the force become singular. The spring force is reprojected along the velocity vector. That is, $\boldsymbol{v} /|\boldsymbol{v}|$ replaces $\boldsymbol{r} /|\boldsymbol{r}|$ in both terms, once in the first term and twice in the second. If the state $\boldsymbol{r}=0$ does not persist for more than an instant, this replacement has no effect on the motion.
- If $r_{0} \neq 0$, and both \boldsymbol{r} and $\boldsymbol{v}=0$ at some instant, the force direction is undefined. The simulation stops with an error.

To avoid singularities in the initial state of motion, be sure to set the bodies' initial conditions of position and velocity to physically sensible values.

Dialog Box and Parameters

Body Spring \& Damper

	The dialog box has two active areas, Parameters and Units.
Parameters	Spring constant (k)
	Enter the linear spring force constant k. The default is 0 .
	The units for k are derived implicitly from your choice of position and force units.
	Damper constant (b)
	Enter the linear damping force constant b. The default is 0 .
	The units for b are derived implicitly from your choice of velocity and force units.
	Spring natural length (r0)
	Enter the spring's natural length (offset) r_{0}. The default is 0 .
Units	Position
	In the pull-down menu, choose units for the relative position vector \boldsymbol{r}. The default is m (meters).
	Velocity
	In the pull-down menu, choose units for the relative velocity vector \boldsymbol{v}. The default is m / s (meters/second).
	Force
	In the pull-down menu, choose units for the spring-damper force \boldsymbol{F} acting between the bodies. The default is N (Newtons).
See Also	Body, Body Actuator, Body Sensor, Custom Joint, Ground, Joint Initial Condition Actuator, Joint Spring \& Damper, Prismatic
	See "Modeling Force Elements" on page 4-58.

Bushing

Purpose	Represent a composite joint with three translational and three rotational DoFs
Library	Joints
Description	The Bushing block represents a composite joint with three translational degrees of freedom (DoFs) as three prismatic primitives and three rotational
DoFs as three revolute primitives. There are no constraints among the primitives. Unlike Six-DoF, Bushing represents the rotational DoFs as three revolutes, rather than as one spherical.	

Caution A joint with three revolute primitives becomes singular if two or three of the rotation axes become parallel ("gimbal lock"). A joint with two or three prismatic primitives becomes singular if two or three of the translation axes become parallel. The simulation stops with errors in these cases.

A joint with three revolute primitives must be configured in the initial state with the three revolute primitive axes mutually orthogonal. There are no restrictions on the primitive axes once the simulation starts, except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Bushing block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Dialog Box and

 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
Parameters

Current base

When you connect the base (B) connector port on the Bushing block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Bushing base and follower Body connector ports" figure.
The base Body is automatically connected to the first joint primitive P1 in the primitive list in Parameters.

Bushing

Current follower

When you connect the follower (F) connector port on the Bushing block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Bushing base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive R3 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motions of prismatic and revolute primitives are specified in linear and angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Bushing base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Bushing has an entry line. These lines specify the direction of the axes of action of the DoFs that the Bushing represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Bushing block: prismatic primitives P1, P2, P3, and revolute primitives R1, R2, R3.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation
- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes and no two of the prismatic axes can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Bearing, Cylindrical, Gimbal, Prismatic, Revolute, Six-DoF

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Connection Port

Purpose

Library

Description

Create a Physical Modeling connector port for a subsystem

Utilities

The Connection Port block, placed inside a subsystem composed of SimMechanics blocks, creates a SimMechanics open round connector port O on the boundary of the subsystem. Once connected to a connection line, the Port becomes solid •.

You connect individual SimMechanics blocks and subsystems made of SimMechanics blocks to one another with SimMechanics connection lines, instead of normal Simulink signal lines. These are anchored at the open, round connector ports \bigcirc. Subsystems constructed out of SimMechanics blocks automatically have such open round connector ports. You can add additional connector ports by adding Connection Port blocks to your subsystem.

Dialog Box and

 Parameters

Port number

This field labels the subsystem connector port created by this block. Multiple connector ports on the boundary of a single subsystem require different numbers as labels. The default value for the first Port is 1.

Port location on parent subsystem

Choose here on which side of the parent subsystem boundary the Port is placed. The choices are Left or Right. The default choice is Left.

In Simulink, see Creating Subsystems.

Constraint \& Driver Sensor

Purpose Measure constraint force/torque between a pair of constrained bodies

Library Sensors \& Actuators
Description
The Constraint \& Driver Sensor block measures the force/torque of constraint (reaction force/torque) between a pair of bodies. You connect this block to the Constraint or Driver block connected between the two Bodies. The output signal is the reaction force/torque.

The Constraint \& Driver Sensor measures the reaction force/torque in the reference coordinate system (CS) specified in the block dialog box. The Constraint or Driver block connects a base and a follower Body. You choose in the dialog box to measure the reaction force/torque on either the base or the follower Body.

The input is the connector port connected to the Constraint or Driver block you want to sense. The outport is a set of Simulink signals or one bundled Simulink signal of the reaction force/torque vector(s).

Physical and Unphysical Reaction Forces Not all the components of the output reaction force/torque signal are significant. Only those components projected into the subspace of the degrees of freedom constrained or driven by the connected Constraint or Driver block are physical. Components orthogonal to the constrained or driven degrees of freedom are unphysical.

A body's orientation rotation matrix R relates vector components measured in the body CS and in the inertial World CS by $[R] \cdot \mathbf{v}_{b}=\mathbf{v}_{s}$. The column vector \mathbf{v}_{b} lists the vector v's three components measured in the body CS. The column vector \mathbf{v}_{s} lists the vector v's three components measured in the World CS.

Constraint \& Driver Sensor

Dialog Box and Parameters

The dialog box has one active area, Measurements.

Measurements Reactions measured on

In the pull-down menu, choose to measure the reaction force/torque on the base (B) or follower (F) Body. The default is Base.

With respect to coordinate system

In the pull-down menu, choose the CS in which the reaction force/torque or motion is interpreted. The default is Absolute (World).

In the Absolute case, the force vectors have components measured relative to the inertial World CS axes. In the Local case, the same force vector signals are premultiplied by the inverse rotation matrix $R^{-1}=R^{\mathrm{T}}$ for the Body selected in Reactions measured on.

Reaction torque

Select the check box if you want to measure the reaction torque. The default is selected. The torque is a row vector in the Simulink output signal.

In the pull-down menu, choose the units for the reaction torque. The default is $\mathrm{N}-\mathrm{m}$ (Newton-meters).

Constraint \& Driver Sensor

Reaction force

Select the check box if you want to measure the reaction force. The default is selected. The force is a row vector in the Simulink output signal.

In the pull-down menu, choose the units for the reaction force. The default is N (Newtons).

Output selected parameters as one signal

Select this check box to convert the output signals into a single bundled signal. The default is selected. If you unselect it, the Constraint \& Driver Sensor block will grow as many Simulink outports as there are active signals selected, in the same order top to bottom, in the dialog box.

If the check box is selected, the Simulink signal out has all the active signals bundled into a single row vector, ordered in the order shown in the dialog box. The type of the signal components depends on which measurements are active (selected).

Example

See Also

Here is a Constraint \& Driver Sensor connected to a Gear Constraint, which connects and constraints two Bodies:

You must add a Sensor port (connector port) to the Constraint/Driver block to connect the Constraint \& Driver Sensor to it. The base (B)-follower (F) Body sequence on the two sides of the Joint determines the sense of the Constraint \& Driver Sensor data.

Body Sensor, Driver Actuator, Joint Sensor, Mechanical Branching Bar

Constraint \& Driver Sensor

See "Body Motion in SimMechanics" on page 3-3 and "Modeling Sensors" on page 4-63.

In Simulink, see the Signal Routing Library and the Sinks Library.

Continuous Angle

Purpose

Library
Description

Convert discontinuous, bounded angular output from a sensor to continuous, unbounded angular output

Utilities

The Continuous Angle block converts a measured angle signal restricted to the semiopen interval $\left(-180^{\circ},+180^{\circ}\right]$ degrees or $(-\pi,+\pi]$ radians to a continuous, unbounded angle not restricted to any interval. This block requires the angle and the angular velocity as input signals. The continuous, unbounded angle is the output signal.

Caution Each Continuous Angle block in a model adds an additional Simulink state to the model. Use this block with caution if you are trimming or linearizing your model.

The Continuous Angle block does not add additional mechanical states.

The Joint Sensor block outputs the absolute rotational measurement of revolute motion as a bounded angle in the interval $\left(-180^{\circ},+180^{\circ}\right]$ degrees or $(-\pi,+\pi]$ radians. Motion that crosses the boundaries of this interval causes discontinuities in the measured angle, from $+180^{\circ}$ to -180° or vice versa. Use the Continuous Angle block if you want to convert this restricted angular measurement to an unbounded measurement.

Dialog Box and Parameters

The dialog box has one active area, Parameters.

Continuous Angle

Parameters

Example

Angle measured in

Choose the units for the input angle and the output continuous angle, either deg (degrees) or rad (radians). The default is deg.

Rate measured in

Choose the units for the input rate (angular velocity), either deg/s (degrees/second) or rad/s (radians/second).

The tutorial "A Four Bar Mechanism" on page 2-36 produces this angular motion output for the Revolute3 and Revolute 2 joints:

The Revolute3 angle is restricted to the interval $\left(-180^{\circ},+180^{\circ}\right]$, so values passing either limit of this interval are mapped to the opposite end of the interval. The Revolute 2 angle is not restricted, but instead touches genuine turning points in its motion.

After passing the angles and angular velocities through Continuous Angle blocks, the Revolute3 angular motion appears different:

Continuous Angle

Revolute3's motion is unchanged, but its angle is now continuous, with no interval restriction. Revolute2's angle is unchanged.

See Also
 Joint Sensor

See "Trimming Mechanical Models" on page 8-16 and "Linearizing Mechanical Models" on page 8-28 for more about states.

See "Additional Useful Blocks" on page 9-5.

Custom Joint

Purpose

Library
Description

Represent a customizable composite joint with up to three translational and up to three rotational degrees of freedom

Joints

The Custom Joint block is a composite joint that you can customize with a specified combination of primitives (prismatic, revolute, or spherical) representing the most general and unconstrained degrees of freedom (DoFs) in three dimensions:

- Up to three translational DoFs as three prismatic primitives
- Up to three rotational DoFs:
- As a single spherical primitive
- As one, two, or three revolute primitives

The sense of rotational DoFs is defined by the right-hand rule. One spherical or three revolutes together form a right-handed system.

You can add, configure, and delete these primitives from the Custom Joint, with a minimum and default of one primitive. The properties of each primitive are the same as the individual Joints of the same names.

Caution A joint with two or three revolute primitives becomes singular if two or three of the rotation axes become parallel ("gimbal lock"). A joint with two or three prismatic primitives becomes singular if two or three of the translation axes become parallel. The simulation stops with errors in these cases.

A joint with three revolute primitives must be configured in the initial state with the three revolute primitive axes mutually orthogonal. There are no restrictions on the primitive axes once the simulation starts, except to prevent any two of the primitive axes from becoming parallel.

The Custom Joint block's primitives are assembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, and the origins of these Body CSs must be spatially collocated points, within assembly tolerances.

Custom Joint

You can connect Actuator and Sensor blocks to a Custom Joint, with each Actuator and Sensor connecting to an individual primitive. You cannot connect an Actuator to a spherical primitive.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

Any Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axes.

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Custom Joint

Connection Parameters

Current base

When you connect the base (B) connector port on the Custom Joint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Custom Joint base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Custom Joint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Custom Joint base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 . A spherical primitive cannot be connected to an Actuator.
The motion of a prismatic primitive is specified in linear units. The motion of a revolute primitive is specified in angular units. The motion of a spherical primitive is three DoFs specified in quaternion form.
The base (B)-follower (F) Body sequence determines the sense of positive motion:

- Positive translation is the follower moving in the direction of the translation axis.
- Positive rotation is the follower rotating in the right-handed sense about the rotation axis.
- Positive rotation is the follower rotating in the right-handed sense as shown by the motion figure in the Spherical block reference page.

Custom Joint

Custom Joint base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are required. Each DoF primitive in Custom Joint has an entry line. These lines specify the direction of the axes of action of the DoFs that the Custom Joint represents.

Name - Primitive

In the pull-down menu, select a label and primitive type for this DoF. Up to three prismatic primitives P1, P2, P3 are allowed. The rotational DoFs are represented by up to three revolute primitives: R1, R2, R3. A spherical primitive S can take all three allowed rotational DoFs instead.

The default value is R1 - Revolute.

Axis of action [x y z]

Enter here as a three-component vector the directional axis defining the allowed motion of this primitive and its corresponding DoF:

- Prismatic: axis of translation
- Revolute: axis of rotation
- Spherical: field is not active

Custom Joint

The default vector is $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes and no two of the prismatic axes can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The field is not active for a spherical primitive.

Managing the Joint Primitives List in a Custom Joint

The Custom Joint primitives list controls (see the following "Custom Joint primitives list controls" figure) allow you to add, reorder, and delete joint primitives in a Custom Joint block:

- To add a joint primitive to the primitives list:
- Highlight an existing primitive name in the list.
- Click on the Add button (see the following "Custom Joint primitives list controls" figure).
A new primitive will appear immediately below the primitive you highlighted.
- To change the position of a joint primitive in the list:
- Highlight the primitive whose position you want to change.
- Click on the Up or Down button (see the following "Custom Joint primitives list controls" figure) until the primitive is where you want it.
- To delete a joint primitive from the list:
- Highlight the primitive you want to delete.
- Click on the Delete button (see the following "Custom Joint primitives list controls" figure).
The primitive you highlighted disappears.
- Custom Joint requires at least one primitive, which you cannot delete.

Custom Joint

Custom Joint primitives list controls

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

See Also
Bushing, Gimbal, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator, Prismatic, Revolute, Six-DoF, Spherical

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose Represent a composite joint with one translational DoF and one rotational DoF, with parallel translation and rotation axes

Library Joints

Description

The Cylindrical block represents a composite joint with one translational degree of freedom (DoF) as one prismatic primitive and one rotational DoF as one revolute primitive. The translation and rotation axes must be parallel.

You must connect each side of the Joint block to a Body block at a Body
coordinate system (CS) point. The Cylindrical block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Dialog Box and

 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Cylindrical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Cylindrical base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive P1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Cylindrical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Cylindrical base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive R1 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motions of prismatic and revolute primitives are specified in linear and angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Cylindrical base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Cylindrical has an entry line. These lines specify the direction of the axes of action of the DoFs that the Cylindrical represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Cylindrical block: prismatic revolute P1 and revolute primitive R1.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation
- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axes are directed vectors whose overall sign matters.

The two axes P1 and R1 in Cylindrical must be aligned.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Disassembled Cylindrical, Prismatic, Revolute, Screw
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics
Works" on page 5-14 for more on closed loops and cutting.

Disassembled Cylindrical

Purpose Represent a disassembled cylindrical joint, with one translational DoF and one rotational DoF along and about misaligned axes, with no constraints

Library
Joints/Disassembled Joints
Description
The Disassembled Cylindrical block represents a composite joint, one translational and one rotational degrees of freedom (DoF) along and about a pair of specified misaligned axes between two bodies. SimMechanics automatically assembles (aligns) the two axes at simulation start.
A cylindrical joint is composite, with two DoFs and a single specified axis: a prismatic primitive translating along the axis, and a revolute primitive rotating about the axis. There are no constraints between the two primitives.

This block is disassembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, but the origins of these Body CSs do not need to be spatially collocated points or lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies. The disassembled translation-rotation joint axes are associated with the base and follower Bodies, respectively.

You can only use a Disassembled Joint block to close a loop. One loop must have no more than one disassembled joint. You cannot connect an Actuator or Sensor to a Disassembled Joint.

[^3]
Disassembled Cylindrical

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Disassembled Cylindrical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Cylindrical base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Disassembled Cylindrical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Cylindrical base and follower Body connector ports" figure.

Disassembled Cylindrical base and follower Body connector ports

Parameters There is one Axes panel.
The entries on the Axes pane are required. They specify the directions of the two misaligned axes of the translational-rotational DoFs that the Disassembled Cylindrical represents.

Name

This column automatically displays the names of the two misaligned rotation axes attached to base and follower bodies, respectively.

Axis of action [x y z]

Enter here as two three-component vectors the two misaligned directional axes along and about which the base and follower bodies respectively can translate and rotate. The default vectors are [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, respectively. The axes are directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate systems (World, the base Body CS, or the follower Body CS) whose coordinate axes the two vector axes of translation-rotation are oriented with respect to. The defaults are WORLD.

Disassembled Cylindrical

See Also
Cylindrical, Disassembled Prismatic, Disassembled Revolute, Disassembled Spherical

See "Modeling Joints" on page 4-17 for more on representing DoFs with Disassembled Joints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting disassembled joints.

Purpose

Library
Description

Represent a disassembled prismatic joint with one translational degree of freedom along misaligned axes

Joints/Disassembled Joints
The Disassembled Prismatic block represents a single translational degree of freedom (DoF) along a pair of specified misaligned axes between two bodies. SimMechanics automatically assembles (aligns) the translation axes at simulation start.

This block is disassembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, but the origins of these Body CSs do not have to lie along a joint axis. As with the Prismatic Joint, these Body CS origins do not need to be spatially collocated points either.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies. The disassembled joint axes are associated with the base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have no more than one disassembled joint. You cannot connect an Actuator or Sensor to a Disassembled Joint.

Disassembled prismatic axes of follower (blue) and base (red)

Disassembled Prismatic

Dialog Box and

 Parameters
Connection
 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Current base

When you connect the base (B) connector port on the Disassembled Prismatic block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Prismatic base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Disassembled Prismatic block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Prismatic base and follower Body connector ports" figure.

Disassembled Prismatic

Disassembled Prismatic base and follower Body connector ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the directions of the two misaligned axes of the translational DoF that the Disassembled Prismatic represents.

Name

This column automatically displays the names of the two misaligned translation axes attached to base and follower bodies, respectively.

Axis of translation [x y z]

Enter here as two three-component vectors the two misaligned directional axes along which the base and follower bodies respectively can translate. The default vectors are [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, respectively. The axes are directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate systems (World, the base Body CS, or the follower Body CS) whose coordinate axes the two vector axes of translation are oriented with respect to. The defaults are WORLD.

Disassembled Prismatic

See Also Disassembled Cylindrical, Disassembled Revolute, Disassembled Spherical, Prismatic

See "Modeling Joints" on page 4-17 for more on representing DoFs with Disassembled Joints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closing loops with disassembled joints.

Purpose

Library
Description

Represent a disassembled revolute joint with one rotational degree of freedom about misaligned axes

Joints/Disassembled Joints
The Disassembled Revolute block represents a single rotational degree of freedom (DoF) along a pair of specified misaligned axes between two bodies. SimMechanics automatically assembles (aligns) the rotation axes at simulation start.

This block is disassembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, but the origins of these Body CSs do not need to be spatially collocated points or lie along a joint axis.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies. The disassembled joint axes are associated with the base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have no more than one disassembled joint. You cannot connect an Actuator or Sensor to a Disassembled Joint.

Disassembled revolute axes of follower (blue) and base (red)

Disassembled Revolute

Dialog Box and Parameters

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Disassembled Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Revolute base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Disassembled Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Disassembled Revolute base and follower Body connector ports" figure.

Disassembled Revolute

Disassembled Revolute base and follower Body connector ports

Parameters There is one Axes panel.

The entries on the Axes pane are required. They specify the directions of the two misaligned axes of the rotational DoF that the Disassembled Revolute represents.

Name

This column automatically displays the names of the two misaligned rotation axes attached to base and follower bodies, respectively.

Axis of rotation [x y z]

Enter here as two three-component vectors the two misaligned directional axes about which the base and follower bodies respectively can rotate. The default vectors are $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, respectively. The axes are directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate systems (World, the base Body CS, or the follower Body CS) whose coordinate axes the two vector axes of rotation are oriented with respect to. The defaults are WORLD.

Disassembled Revolute

See Also Disassembled Cylindrical, Disassembled Prismatic, Disassembled Spherical, Revolute

See "Modeling Joints" on page 4-17 for more on representing DoFs with Disassembled Joints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closing loops with disassembled joints.

Disassembled Spherical

Purpose

Library
Description

Represent a disassembled spherical joint with three rotational degrees of freedom about dislocated pivots

Joints/Disassembled Joints
The Disassembled Spherical block represents three rotational degrees of freedom (DoF) about a pair of specified dislocated pivots at the two bodies, separated "ball-in-socket" joints. SimMechanics automatically assembles (collocates) the spherical pivots at simulation start.

Two rotational DoFs specify a directional axis, and a third rotational DoF specifies rotation about that directional axis. (See the motion figure in the Spherical block reference page.) The sense of each rotational DoF is defined by the right-hand rule. Unlike the Gimbal block, the Disassembled Spherical block cannot become singular.

This block is disassembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, but the origins of these Body CSs (the dislocated pivots) do not need to be spatially collocated points.
You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies. The disassembled joint pivots are associated with the base and follower Bodies, respectively.

You can only use a disassembled Joint block to close a loop. One loop must have no more than one disassembled joint. You cannot connect an Actuator or Sensor to a Disassembled Joint.

Disassembled spherical pivots of follower (blue) and base (red)

Disassembled Spherical

Dialog Box and Parameters

Connection
 Parameters

See Also $\quad \begin{aligned} & \text { Disassembled Cylindrical, Disassembled Prismatic, Disassembled Revolute, } \\ & \text { Gimbal, Spherical }\end{aligned}$

See "Modeling Joints" on page 4-17 for more on representing DoFs with Disassembled Joints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closing loops with disassembled joints.

Distance Driver

Purpose

Library
Description
$\underset{x(t)}{-(\mathrm{O}}$

Specify the distance between two Body CS origins as a function of time

Constraints \& Drivers

The Distance Driver block drives the distance between the origins of two Body coordinate system (CS) as a function of time that you specify. This function must always remain nonnegative during the simulation.

Let $\mathbf{r}_{1}, \mathbf{r}_{2}$ be the vector positions of the origins of CS1 on one Body and CS2 on the other Body, respectively. These vectors can be measured in any CS. The Distance Driver specifies the scalar distance $d=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ between these points as a function of time:

$$
\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|=d(t=0)+f(t)
$$

You connect the Distance Driver to a Driver Actuator block.
The Simulink input signal into the Driver Actuator specifies the time-dependent driving function $f(t)$ and its first two derivatives, as well as their units. If you do not actuate Distance Driver, this block acts as a time-independent constraint that freezes the distance between the two Body CSs at its initial value $d(t=0)$ during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of bodies as specified functions of time. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Driver blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint \& Driver Sensor to any Driver and measure the reaction forces/torques between the driven bodies.

Distance Driver

Dialog Box and Parameters

*) Block Parameters: Distance Driver			\square	x
Description Drives the distance between origins of the base (B) and follower (F) Body coordinate systems with a specified Driver Actuator signal, which is added to the initial condition. An unactuated Driver holds the distance in its initial state. Distance must remain non-negative at all times. Sensor and actuator ports can be added.				
Connection parameters snot connected> Current base: snot connected> Current follower: 0 Number of sensor $/$ actuator ports:				
OK	Cancel	Help	Apply	

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Distance Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Distance Driver base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Distance Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Distance Driver base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Driver Actuator and Constraint \& Driver Sensor blocks to this Driver. The default is 0 .

To activate the Driver, connect a Driver Actuator.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis.

Distance Driver

Distance Driver base and follower Body connector ports

See Also Constraint \& Driver Sensor, Driver Actuator, Linear Driver, Weld
See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Drivers.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using drivers in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Driver Actuator

Purpose

Library

Description

Apply relative motion between a pair of constrained bodies through a driver

Sensors \& Actuators

The Driver Actuator block actuates a Driver block connected between a pair of bodies. You connect the block to the Driver block connected between the Bodies. The Driver block represents a time-dependent (rheonomic) constraint on a relative degree of freedom (DoF) between the two bodies. A Driver requires a time-dependent function to specify the relative position, velocity, and acceleration of the connected Bodies. The output of the Driver Actuator is this time-dependent function $f(t)$ and its first two derivatives.

You specify these three functions as a bundled Simulink input signal. This signal can be any Simulink signal, including a signal feedback from a Sensor block, satisfying these conditions:

- The signal must consist of three bundled components.
- Exception: The Velocity Driver requires two bundled components.
- The three components must be ordered $\left(f(t), d f(t) / d t, d^{2} f(t) / d t^{2}\right)$.
- Exception: The Velocity Driver requires a function and its derivative ($f(t)$, $d f(t) / d t)$.
- Each successive signal component must be the time derivative of the previous component.
- The specific meaning of $f(t)$ depends on the connected Driver block being actuated. Select the specific Driver block for details.

Linear Motions	Angular Motions
Distance Driver	Angle Driver
Linear Driver	
Velocity Driver	

The Driver connects a base (B) and a follower (F) Body. The base-follower sequence determines the sense of the actuation signal. The inport is the Simulink input signal. The output is the connector port you connect to the Driver block you want to actuate.

Driver Actuator

Note You do not have to connect a Driver Actuator to a Driver block. If you do not actuate a Driver, the Driver block acts as a time-independent constraint that freezes the driven relative DoF between the Bodies at its initial value during the simulation.

Dialog Box and Parameters

d. Block Parameters : Driver Actu... $-\|\square\| \underline{x}$				
Description \qquad Inputs position, velocity, and acceleration Simulink signals to Driver to drive relative motion between Base (B) and Follower (F) Bodies. Base-Follower direction determines sense of Driver Actuator data. Input is muxed Simulink signal.				
Actuation				
Position		m		
Velocity		mis		
Acceleration		m/s ${ }^{2}$		
OK	Cancel	Help		pply

The dialog box has one active area, Actuation.

Actuation

Position

In the pull-down menu, choose the units of the actuating $f(t)$ you apply to the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field does not appear.

Velocity

In the pull-down menu, choose the units of the actuating $d f(t) / d t$ you apply to the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field refers to $f(t)$.

Acceleration

In the pull-down menu, choose the units of the actuating $d^{2} f(t) / d t^{2}$ you apply to the relative motion of the bodies.

If the Driver Actuator is connected to a Velocity Driver, this field refers to $d f(t) / d t$.

Example

See Also

Here is a Driver Actuator connected to a Distance Driver, which connects two Bodies:

You must add an Actuator port (connector port) to the Driver block to connect the Driver Actuator to it. The base (B)-follower (F) Body sequence on the two sides of the Driver determines the sense of the Driver Actuator data.

The Driver Actuator drives the relative motion between the two Bodies connected to the Driver. The nature of the connected Driver block determines the exact meaning of the actuation data, including the choice of units.

Body Actuator, Constraint \& Driver Sensor, Joint Actuator, Mechanical Branching Bar

See "Constraining and Driving Motion" on page 9-4.
In Simulink, see the Signal Routing Library and the Sources Library.

Gear Constraint

Purpose Constrain the rotational motion of two bodies to move along tangent pitch

 circlesLibrary Constraints \& Drivers
Description
The two Bodies connected by a Gear Constraint block are each restricted to turn relative to another along pitch circles centered at each body. The pitch circle centers are the origins of the Body coordinate systems (CSs) at which the Gear Constraint block is connected on either side. The pitch circles are tangent at one contact point.

Let $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ be the radius vectors of the two pitch circles and ω_{1}, ω_{2} the angular velocity vectors of the two bodies. The Gear Constraint requires that:

$$
\omega_{1} \times r_{1}=\omega_{2} \times r_{2}
$$

You specify the scalar radii r_{1}, r_{2} of the pitch circles.
You must also connect the two Bodies connected by a Gear Constraint to a third, carrier Body by Revolute or Cylindrical Joints. (The third carrier body can be ground, but you must use two Ground blocks in this case, because a Ground has only one Body CS port. Both Grounds represent the same immobile body.) The constrained pair of Bodies rotate relative to one another about distinct rotational axes defined by the angular velocity vectors ω_{1}, ω_{2}. These axes do not have to be parallel.

Constraints restrict relative degrees of freedom (DoFs) between a pair of bodies. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Constraint blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Constraint are ordered as base and follower, fixing the direction of relative motion.

You can connect a Constraint \& Driver Sensor to a Constraint block, but not a Driver Actuator. The Constraint \& Driver Sensor measures the reaction forces/torques between the constrained bodies.

Gear Constraint

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection Parameters

Current base

When you connect the base (B) connector port on the Gear Constraint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Gear Constraint base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Gear Constraint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Gear Constraint base and follower Body connector ports" figure.

Gear Constraint

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Constraint \& Driver Sensor blocks to this Constraint. The default is 0 .

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower rotating in the right-handed sense about the rotation axis.

Gear Constraint base and follower Body connector ports

Parameters Pitch circle located at base

Enter Radius and Units for the pitch circle centered at base Body CS. The defaults are 1 and m (meters).

Pitch circle located at follower

Enter Radius and Units for the pitch circle centered at follower Body CS. The defaults are 1 and m (meters).

Example

See Also

A simple example of a valid part of a model with a Gear Constraint:

The Body CS origins CS2@Body1 and CS1@Body2 must be separated and oriented in such a way that the gear pitch circles are in contact and tangent at one point.

Body, Constraint \& Driver Sensor, Cylindrical, Ground, Revolute
See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Constraints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using constraints in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Gimbal

Purpose Represent a composite joint with three rotational DoFs

Library Joints

Description

The Gimbal block represents a composite joint with three rotational degrees of freedom (DoFs) as three revolute primitives. There are no constraints among the primitives.

Caution A joint with three revolute primitives becomes singular if two or three of the rotation axes become parallel ("gimbal lock"). The simulation stops with an error in this case.

A joint with three revolute primitives must be configured in the initial state with the three revolute primitive axes mutually orthogonal. There are no restrictions on the primitive axes once the simulation starts, except to prevent any two of the primitive axes from becoming parallel.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Gimbal block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Gimbal

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the Gimbal block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Gimbal base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive R1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Gimbal block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Gimbal base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive R3 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of revolute primitives is specified in angular units.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Gimbal base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Gimbal has an entry line. These lines specify the direction of the axes of action of the DoFs that the Gimbal represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Gimbal block: revolute primitives R1, R2, R3.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the revolute axes can be parallel.

Gimbal

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Axes Advanced
    \Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also

Revolute, Spherical
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose Represent an immobile point at rest in World

Library Bodies

Description
A Ground block represents an immobile ground point at rest in the absolute inertial World reference frame (RF). Connecting it to a Joint prevents one side of that Joint from moving. You can also connect a Ground block to a Machine Environment block.

Note Every valid SimMechanics machine must have at least one Ground block.

You must connect exactly one Ground block in each machine of your model to a Machine Environment block.

Ground is a type of Body, but you can connect only one side of a Ground to a Joint block. A Ground block automatically carries a grounded coordinate system (CS). This Grounded CS is inertial, at rest in the World reference frame, with coordinate axes parallel to the World axes:
$+x$ points right
$+y$ points up (gravity in $-y$ direction)
$+z$ points out of the screen, in three dimensions
But a Ground's origin is the ground point, which in general is shifted with respect to the World origin.

Multiple Ground blocks represent different fixed points in the global inertial World. In the topology of a machine model, multiple Ground blocks function as a single body.

You cannot connect a Sensor or Actuator to a Ground block, because the ground point cannot be moved.

Ground

Dialog Box and Parameters

Location

Enter the position of the ground point translated from the origin of the World CS. The position is specified as a translation vector (x, y, z), with components projected onto the fixed World CS axes. Set the Ground position units using the pull-down menu to the right. The defaults are [0 0 0] and m (meters).

Show Machine Environment port

Select to enable the Machine Environment port on the Ground block. This port allows you to connect a Machine Environment block to the Ground and the machine that the Ground is a part of. The default is unselected.

A Ground Without and With a Connected Machine Environment Block
Configuring If you connect a Machine Environment block to a Ground, you can adjust the the Mechanical Environment

Body, Machine Environment
See "Modeling Machines" on page 4-2, "Modeling Bodies and Grounds" on page 4-8, and "Modeling Joints" on page 4-17 for more on creating valid SimMechanics models and setting up Grounds.
See the relevant entries in the Glossary: ground, grounded CS, machine, and World.

In-Plane

Purpose Represent a composite joint with two translational DoFs

Library Joints

Description

The In-Plane block represents a composite joint with two translational degrees of freedom (DoFs) as two prismatic primitives. There are no constraints among the primitives.

Caution A joint with two prismatic primitives becomes singular if the two translation axes become parallel. The simulation stops with an error in this case.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The In-Plane block is assembled: the origins of these Body CSs must lie along the primitive axes, within assembly tolerances. But the Body CS origins on either side of the Joint do not have to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

In-Plane

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the In-Plane block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "In-Plane base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive P1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the In-Plane block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "In-Plane base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive P2 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of prismatic primitives is specified in linear units.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis.

In-Plane base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in In-Plane has an entry line. These lines specify the direction of the axes of action of the DoFs that the In-Plane represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the In-Plane block: prismatic primitives P1, P2.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic axes cannot be parallel.

In-Plane

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically.
Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also

Planar, Prismatic
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose Apply force/torque or motion to a joint primitive

Library

Description

Sensors \& Actuators

A joint between two bodies represents relative degrees of freedom (DoFs) between the bodies. The Joint Actuator block actuates a Joint block connected between two Bodies with one of these signals:

- A generalized force:
- Force for translational motion along a prismatic joint primitive
- Torque for rotational motion about a revolute joint primitive
- A motion:
- Translational motion for a prismatic joint primitive, in terms of linear position, velocity, and acceleration. The velocity signal must be the derivative of the position signal, and the acceleration the derivative of the velocity.
- Rotational motion for a revolute joint primitive, in terms of angular position, velocity, and acceleration. The angular velocity signal must be the derivative of the angle signal, and the angular acceleration the derivative of the angular velocity.
The generalized force or the motion is a function of time specified by a Simulink input signal. This signal can be any Simulink signal, including a signal feedback from a Sensor block.

The Joint Actuator applies the actuation signal along/about the joint axis in the reference coordinate system (CS) specified for that joint primitive in the Joint's dialog box. The Joint connects a base and a follower Body. The base-follower sequence determines the sense of the actuation signal.

The inport is the Simulink input signal. The output is the connector port you connect to the Joint block you want to actuate. A Joint Actuator block actuates one joint primitive at a time:

- A primitive Joint (Prismatic or Revolute) has only one primitive within the Joint to actuate.
- A composite Joint has multiple joint primitives within, and you must choose which of those primitives to actuate with the Joint Actuator.

Joint Actuator

You cannot connect a Joint Actuator to a Spherical or spherical primitive.

Dialog Box and Parameters

The dialog box has one active area, Actuation.

Actuation

Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint that you want to actuate with the Joint Actuator. A primitive Joint block has only one joint primitive.

You cannot connect a Joint Actuator to a spherical primitive.
If the Joint Actuator is not connected to a Joint block, this menu shows only Unknown.

Using the radio buttons, you can toggle between the two types of actuation, Generalized forces and Motion.

Generalized Forces

This option interprets the actuation signal as a force or a torque between the Bodies connected by the Joint block you are actuating.
¢ Generalized forces
Apply force (prismatic only)
Apply torque (revolute only)

Apply torque (revolute only)

In the pull-down menu, choose units for the actuation torque. The default is $\mathrm{N}-\mathrm{m}$ (Newton-meters). This choice is valid only if you connect this Actuator block to a revolute primitive.

The Simulink input is a 1-component signal.

Apply force (prismatic only)

In the pull-down menu, choose units for the actuation force. The default is N (Newtons). This choice is valid only if you connect this Actuator block to a prismatic primitive.

The Simulink input is a 1-component signal.
This option interprets the actuation signal as a motion of the joint primitive to which you connect the Joint Actuator.

Joint Actuator

Apply translational motion (prismatic only)

In the pull-down menus, choose units for the linear actuation Position,
Velocity, and Acceleration. The defaults are m (meters), m/s
(meters/second), and $\mathrm{m} / \mathrm{s}^{2}$ (meters/second ${ }^{2}$), respectively.
The Simulink input is a bundled 3-component signal with components in the order shown in the dialog box.

Apply rotational motion (revolute only)

In the pull-down menus, choose units for the angular actuation Angle, Angular Velocity, and Angular Acceleration. The defaults are deg (degrees), deg/s (degrees/second), and deg/s ${ }^{2}$ (degrees/second ${ }^{2}$), respectively.

The Simulink input is a bundled 3-component signal with components in the order shown in the dialog box.

Example

See Also

Here is a Joint Actuator connected to a Prismatic that connects two Bodies:

You must add an Actuator port (connector port) to the Joint block to connect the Joint Actuator to it. The base (B)-follower (F) Body sequence on the two sides of the Joint determines the sense of the Joint Actuator data.

Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator, Mechanical Branching Bar, Prismatic, Revolute

See "Modeling Degrees of Freedom" on page 9-3.
In Simulink, see the Signal Routing Library and the Sources Library.

Joint Initial Condition Actuator

Purpose

Library
Description
IC

Apply initial positions and velocities to the primitives of a Joint before starting simulation

Sensors \& Actuators
The Joint Initial Condition Actuator block supplies the prismatic and revolute joint primitives of a Joint block with initial value data. The initial values are the positions and velocities of the joint primitives and fully specify the initial state of motion (initial kinematic state) of those primitives.
When you build your machine, the geometric configuration implicitly specifies the initial positions/angles of bodies relative to one another and to World. The Ground, Body, and Joint layout only specifies initial coordinates (degrees of freedom), not their corresponding velocities, however. Starting a simulation in this state implicitly sets all initial velocities to zero. You can set the full initial kinematic state, both positions and velocities, of joint primitives by using Joint Initial Condition Actuator blocks.

You can set initial positions and velocities for two primitive types:

- Translational initial conditions for a prismatic primitive, in terms of linear position and velocity
- Rotational initial conditions for a revolute primitive, in terms of angular position and velocity
This block can actuate one, some, or all of the prismatic and revolute primitives of a Joint.

The Joint Initial Condition Actuator applies the initial state along/about the joint axis in the reference coordinate system (CS) specified for that joint primitive in the Joint's dialog box. The Joint connects a base and a follower Body. The base-follower sequence determines the sense of the actuation signal.

The output is the connector port you connect to the Joint block whose initial conditions you want to set. You set the initial linear and/or angular positions and velocities in the block's dialog box, so there is no input signal.
You cannot actuate a Spherical or spherical primitive with a Joint Initial Condition Actuator.

Dialog Box and Parameters

d) Block Parameters : Joint Initial Condition					- - \square] x
Description Sets initial lineariangular position and velocity of all the primitives in a joint. Connect to a joint to see a list of its primitives.					
Actuation					
Enable	Primitive	Position	Units	Velocity	Units
Γ	P1	0	\|m	0	mis
Γ	P2	0	m -	-	mis
Γ	P3	0	$\mathrm{m} \rightarrow$	0	mis
Γ	R1	0	rad \quad	-	radis
Γ	R2	0	rad	O	radis
Γ	R3	0	\|rad	0	radis
OK			Cancel	Help	Apply

The dialog box has one active area, Actuation.

Actuation

The menu choices are available for every primitive in the Joint to which the Joint Initial Condition Actuator is connected. If you connect the Actuator with its dialog open, the primitive list is automatically updated to reflect the connected Joint's primitives.

Enable

Select this check box if you want to actuate the primitive with initial conditions. The default is unselected.

Primitive

Displays the name of the primitive within the Joint. Not an active field.

Position

Enter a value for the initial position of the primitive, either prismatic or revolute. The default is 0 .

Units

In the pull-down menu, select units for the initial position. The defaults are m (meters) for prismatic primitives and rad (radians) for revolute primitives.

Joint Initial Condition Actuator

Velocity

Enter a value for the initial velocity of the primitive, either prismatic or revolute. The default is 0 .

Units

In the pull-down menu, select units for the initial velocity. The defaults are m / s (meters/second) for prismatic primitives and rad/s (radians/second) for revolute primitives.

You cannot connect a Joint Initial Condition Actuator to a spherical primitive. If the connected Joint has a spherical primitive, the entry for that primitive is grayed out:

Example

Here is a Joint Initial Condition Actuator connected to a Custom Joint, which connects two Bodies:

Joint Initial Condition Actuator

You must add an Actuator port (connector port) to the Joint block to connect the Joint Initial Condition Actuator to it. The base (B)-follower (F) Body sequence on the two sides of the Joint determines the sense of the Joint Initial Condition Actuator data.

See Also Joint Actuator, Joint Sensor, Joint Stiction Actuator, Mechanical Branching Bar, Prismatic, Revolute

See "Using JICA Blocks" on page 4-53 for setting general initial conditions (positions and velocities) of DoFs in a machine.

See "Modeling Degrees of Freedom" on page 9-3.
In Simulink, see the Signal Routing Library and the Sources Library.

Joint Sensor

Purpose Measure the motion and force/torque of a joint primitive

Library Sensors \& Actuators

Description
The Joint Sensor block measures the position, velocity, and/or acceleration of a joint primitive in a Joint block.

The Joint Sensor measures the motion along/about the joint axis (or about the pivot point for a spherical primitive) in the reference coordinate system (CS) specified for that joint primitive in the Joint's dialog box. The Joint connects a base and a follower Body. The base-follower sequence determines the sense of the motion.

Depending on the joint primitive being sensed, you measure one of these motion types:

- Translational motion for a prismatic joint primitive, in terms of linear position, velocity, and/or acceleration
- Rotational motion for a revolute joint primitive, in terms of angular position, velocity, and/or acceleration
- Spherical motion for a spherical joint primitive, in terms of a quaternion, quaternion derivative, and/or quaternion second derivative
The input is the connector port connected to the Joint being sensed. The outport is a set of Simulink signals or one bundled Simulink signal of the position, velocity, and/or acceleration of the joint primitive.

A Joint Sensor block measures one joint primitive at a time:

- A primitive Joint (Prismatic or Revolute) has only one primitive within the Joint to sense.
- A composite Joint has multiple joint primitives within, and you must choose which primitive to sense with the Joint Sensor.

A body's orientation rotation matrix R relates vector components measured in the body CS and in the inertial World CS by $[R] \cdot \mathbf{v}_{b}=\mathbf{v}_{s}$. The column vector \mathbf{v}_{b} lists the vector v's three components measured in the body CS. The column vector \mathbf{v}_{s} lists the vector \mathbf{v} 's three components measured in the World CS.

Joint Sensor

Dialog Box and

 Parameters| - Block Parameters : Joint Sensor | | |
| :---: | :---: | :---: |
| Description
 Measures lineariangular position, velocity, acceleration, computed forceitorque andfor reaction forceltorque of a Joint primitive. Spherical measured by quaternion. Base-follower sequence and joint axis determine sign of forward motion. Outputs are Simulink signals. Multiple output signals can be bundled into one signal. Connect to Joint block to see Connected to primitive list. | | |
| | | |
| Measurements | | |
| Connected to primitive | Unknown | |
| V Angle | deg | |
| \ulcorner Angular velocity | deg/s | |
| \ulcorner Angular acceleration | deg/s^2 | |
| \ulcorner computed torque | N-m | |
| V Position | m | |
| \checkmark velocity | mis | |
| \ulcorner Acceleration | mis ${ }^{2}$ | |
| Γ computed force | N | |
| V Quaternion | | |
| \ulcorner Quaternion, derivative | | |
| \ulcorner Quaternion, second derivative | | |
| \ulcorner Reaction torque | N-m | |
| \ulcorner Reaction force | | |
| Reactions measured on: | Base | |
| With respect to coordinate s | tem:Absolutt | Id) |
| - Output selected parameters as one signal | | |
| OK Cancel | Help | Apply |

The dialog box has one active area, Measurements.

Measurements Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint that you want to measure with the Joint Sensor. A primitive Joint block has only one joint primitive.

Joint Sensor

If the Joint Sensor is not connected to a Joint block, this menu shows only Unknown.

The Measurements pane you see in the Joint Sensor dialog depends on the type of joint primitive to which you connect the Joint Sensor.

Prismatic joint primitive (\mathbf{P})

Select the check box(es) for each of the possible measurements you want to make: Position, Velocity, Acceleration, Computed Force, Reaction Torque, and Reaction Force.

The computed force is that force along the prismatic axis which reproduces the follower motion with respect to base.

The reaction force and torque are 3-component vectors of the force and torque that the joint primitive transfers to the base or follower Body.

In the pull-down menus, choose the units for each of the measurements you want. The defaults are m (meters), m / s (meters $/$ second), $\mathrm{m} / \mathrm{s}^{2}$ (meters/second ${ }^{2}$), N (Newtons), and $N-m$ (Newton-meters), respectively, for Position, Velocity, Acceleration, Force, and Torque.

Joint Sensor

The bundled Simulink output signal for a prismatic primitive has these measurements ordered in a row vector. Unselected components are removed from the vector signal:

Position	Velocity	Acceleration	Computed Force	Reaction Torque (3-vector)	Reaction Force (3-vector)

Revolute joint primitive (R)

Select the check box(es) for each of the possible measurements you want to make: Angle, Angular velocity, Angular acceleration, Computed Torque, Reaction Torque, and Reaction Force.

The computed torque is that torque about the revolute axis which reproduces the follower motion with respect to base.

The reaction force and torque are 3-component vectors of the force and torque that the joint primitive transfers to the base or follower Body.

In the pull-down menus, choose the units for each of the measurements you want. The defaults are deg (degrees), deg/s (degrees/second), deg/s ${ }^{2}$ (degrees/second ${ }^{2}$), N-m (Newton-meters), and N (Newtons), respectively, for Angle, Angular Velocity, Angular Acceleration, Torque, and Force.

Joint Sensor

Note The absolute angle of revolute motion is mapped on to the interval $\left(-180^{\circ},+180^{\circ}\right.$] degrees or $(-\pi,+\pi]$ radians.

The bundled Simulink output signal for a revolute primitive has these measurements ordered in a row vector. Unselected components are removed from the vector signal:

Angle	Angular Velocity	Angular Acceleration	Computed Torque	Reaction Force (3-vector)	Reaction Torque $(3$-vector)

Spherical joint primitive (S)

Select the check box(es) for each of the possible measurements you want to make: Quaternion, Quaternion, derivative, and Quaternion, second derivative, Reaction Torque, and Reaction Force.

The reaction force and torque are 3-component vectors of the force and torque that the joint primitive transfers to the base or follower Body.

Quaternions are dimensionless, 4-component row vectors. The time unit for the derivatives is seconds. In the pull-down menus, choose units for reaction torque and force. The defaults are $\mathrm{N}-\mathrm{m}$ (Newton-meters) and N (Newtons), respectively, for Torque and Force.

Joint Sensor

The bundled Simulink output signal for a spherical primitive has these quaternion measurements ordered into a larger row vector. Unselected components are removed from the vector signal:

Quaternion (4-vector)	Quaternion, derivative (4-vector)	Quaternion, second derivative (4-vector)	Reaction Torque (3-vector)	Reaction Force (3-vector)

Reactions measured on

Choose the Body on which the reaction force and torque vectors are measured, Base or Follower. The default is Base.

With respect to coordinate system

In the pull-down menu, choose the coordinate system in which the reaction torque and force vectors are measured: either the Local (Body CS) to which the Sensor is connected or the default Absolute (World).

In the Absolute case, the force and torque vectors have components measured relative to the inertial World CS axes. In the Local case, the same force and torque signals are premultiplied by the inverse orientation rotation matrix $R^{-1}=R^{\mathrm{T}}$ for the Body selected in Reactions measured on.

Joint Sensor

Output selected parameters as one signal

Select this check box to convert all the output signals into a single bundled signal. The default is selected. If you unselect it, the Joint Sensor block will grow as many Simulink outports as there are active signals selected, in the same order top to bottom, in the dialog box.

If the check box is selected, the Simulink signal out has all the active signals ordered into a single row vector. The order and type of the signal components depend on the joint primitive, as listed in the Simulink signal tables above.

Example

See Also

Here is a Joint Sensor connected to a Prismatic that connects two Bodies:

You must add an Sensor port (connector port) to the Joint block to connect the Joint Sensor to it. The base (B)-follower (F) Body sequence on the two sides of the Joint determines the sense of the Joint Sensor data.

Body Sensor, Constraint \& Driver Sensor, Joint Actuator, Joint Initial Condition Actuator, Joint Stiction Actuator, Mechanical Branching Bar, Prismatic, Revolute, Spherical

See "Body Motion in SimMechanics" on page 3-3 and "Modeling Sensors" on page 4-63.

In Simulink, see the Signal Routing Library and the Sinks Library.

Joint Spring \& Damper

Purpose

Library Force Elements
Description
 joint between two bodies

Models a damped linear oscillator force or torque on a prismatic or revolute

The Joint Spring \& Damper block models a damped linear oscillator force acting along a prismatic primitive or a damped linear oscillator torque acting about a revolute primitive. The joint primitives are connected between two bodies, and the force or torque acts between these bodies. The sign of the force or torque is set by the base (B)-to-follower (F) sequence of the bodies. These models represent damped linear translational and torsional springs in the prismatic and revolute cases, respectively.

You connect this block to a Joint at one of the Joint's sensor/actuator ports. (If the Joint lacks a sensor/actuator port, open its dialog and create one.) The Joint represents any mixture of translational and rotational degrees of freedom (DoFs). With the Joint Spring \& Damper block, you can then apply any combination of damped linear oscillator forces on any prismatics and damped linear torsion torques on any revolutes.

Joint Spring and Damper Theory

Connect two Bodies with a Joint having some combination of prismatic and revolute primitives.

If x represents the displacement along a prismatic axis, and $v=\mathrm{d} x / \mathrm{dt}$ is the prismatic DoF's linear speed, then the damped spring force acting along this prismatic and between the Bodies connected by this Joint is

$$
F=-k\left(x-x_{0}\right)-b v
$$

The model parameters are the spring constant k, the natural spring length (offset) x_{0}, and the damping constant b. The natural length is the spring's length with no forces acting on it and should be nonnegative: $x_{0} \geq 0$. A stable spring requires $k>0$. A damping representing dissipation and respecting the second law of thermodynamics requires $b \geq 0$. You can use a negative b to represent energy pumping.

If θ represents the displacement about a revolute axis, and $\omega=d \theta / d t$ is the revolute DoF's angular speed, then the damped torsion torque acting about this revolute and between the Bodies connected by this Joint is

Joint Spring \& Damper

$$
\tau=-k\left(\theta-\theta_{0}\right)-b \omega
$$

The model parameters are the torsion constant k, the natural torsion angle (offset) θ_{0}, and the damping constant b. The natural angle is the torsion balance's direction with no torques acting on it and can have any sign. A stable torsion requires $k>0$. A damping representing dissipation and respecting the second law of thermodynamics requires $b \geq 0$. You can use a negative b to represent energy pumping.

Dialog Box and Parameters

d) Block Parameters: Joint Spring \& Damper								-
Joint Spring \& Damper Models a damped linear oscillator in a Joint connecting two Bodies, equivalent to a translational spring and damper on prismatic primitives and a torsional spring and damper on revolute primitives. The force or torque F between the bodies is a function of the relative linear or angular displacement x and the linear or angular velocity v of the bodies, given by F $=-k^{*}(x-x 0)-b^{*} y$. The parameters $\times 0, k$, and b represent the spring offset, spring constant, and damper constant, respectively.								
- Actuation								
Enable	Primitive	Spring Constant k	Damper Constant b	Spring Offset $\times 0$	Position Units	Velocity Units	Force Torque Units	
Γ	P1	0	0	0	\|m -	mis	N	\checkmark
Γ	P2	0	0	0	$\mathrm{m} \rightarrow$	m / s	N	\checkmark
Γ	P3	0	0	0	m	m / s	N	\checkmark
Γ	R1	0	0	0	rad	rad/s	N-m	\square
Γ	R2	0	0	0	rad -	radis	N-m	\square
Γ	R3	0	0	0	rad	radis	N-m	\square
OK Cancel Help Apply								

The dialog box has one active area, Actuation.

Actuation

The menu lists all the active primitives in the Joint to which the Joint Spring \& Damper block is connected. If you connect the Joint Spring \& Damper with its dialog open, the primitive list is automatically updated to reflect the connected Joint's primitives.

Joint Spring \& Damper

Enable

To enable force or torque actuation on any particular primitive in the Joint, select the Enable check box next to that primitive's name in the Primitive column. You cannot actuate spherical primitives.

Primitive

Lists the active primitives in the Joint to which the block is connected. P represents a prismatic primitive, R a revolute primitive, and S a spherical primitive.

Spring Constant k

Enter the spring or torsion constant k, for a prismatic or revolute primitive, respectively. The default is 0 .

The units for k are derived implicitly from your choice of position and force/torque units.

Damper Constant b

Enter the spring or torsion damping constant b, for a prismatic or revolute primitive, respectively. The default is 0 .

The units for b are derived implicitly from your choice of velocity and force/torque units.

Spring Offset x0

Enter the natural spring length x_{0} or the natural torsion angle θ_{0}, for a prismatic or revolute primitive, respectively. The default is 0 .

Position Units

In the pull-down menu, select linear or angular units for prismatic or revolute primitives, respectively. The default is m (meters) or rad (radians).

Velocity Units

In the pull-down menu, select linear or angular velocity units for prismatic or revolute primitives, respectively. The default is m / s (meters/second) or rad/s (radians/second).

Force/Torque Units

In the pull-down menu, select force or torque units for prismatic or revolute primitives, respectively. The default is N (Newtons) or $\mathrm{N}-\mathrm{m}$ (Newton-meters).

Joint Spring \& Damper

See Also
Body, Body Spring \& Damper, Custom Joint, Joint Actuator, Joint Sensor, Prismatic, Revolute
See "Modeling Force Elements" on page 4-58.

Joint Stiction Actuator

Purpose

Library

Description

$\sqrt{\text { Extemal Actuation }}$
$>$
Kinetic Friction
Foward Stiction Limit
Static Friction
Reverse Stiction Limit

Apply classical friction to a joint primitive
Sensors \& Actuators
The Joint Stiction Actuator block applies stiction (classical friction) to a prismatic or revolute joint primitive. The stiction is regulated by a friction model whose parameters you specify. (See "Stiction Theory" following.) The Joint Stiction Actuator applies stiction to the joint primitive as a relative force/torque between the joint's connected Bodies. The bodies can experience additional forces independent of the applied stiction.

The inports are Simulink signals. The output is a connector port. You cannot connect a Joint Stiction Actuator to a Spherical block or spherical primitive. Restrictions on simultaneous actuators and sensors include:

- You cannot actuate a joint primitive simultaneously with a Joint Stiction Actuator and a Joint Actuator. But with the Joint Stiction Actuator inport External Actuation, you can apply to the joint primitive an external (nonfrictional) force/torque actuation signal equivalent to applying a Joint Actuator.
- You can simultaneously actuate a joint primitive with a Joint Stiction Actuator and a Joint Initial Condition Actuator.
- You can also simultaneously actuate a joint primitive with a Joint Stiction Actuator and measure the force/torque along/around the joint primitive with a Joint Sensor.

Caution You cannot trim or linearize a SimMechanics model that contains a Joint Stiction Actuator block.

Joint Stiction Actuator

Dialog Box and Parameters

The dialog box has one active area, Stiction actuation.

Connected to primitive

In the pull-down menu, choose the joint primitive within the Joint that you want to actuate with the Joint Stiction Actuator. A primitive Joint block has only one joint primitive.

You cannot connect a Joint Stiction Actuator to a spherical primitive.
If the Joint Stiction Actuator is not connected to a Joint block, this menu displays Unknown.

External force units

In the pull-down menu, choose units for the external nonfrictional force/torque $F_{\text {ext }}$. The default is N (Newtons) if connected to a prismatic primitive and $\mathrm{N}-\mathrm{m}$ (Newton-meters) if connected to a revolute primitive.

Kinetic friction units

In the pull-down menu, choose units for the kinetic friction force/torque F_{K}. The default is N (Newtons) if connected to a prismatic primitive and $N-m$ (Newton-meters) if connected to a revolute primitive.

Joint Stiction Actuator

Velocity threshold (MKS-SI units)

Enter the positive relative speed of the joint primitive below which the joint locks by static friction. Above that speed, the joint is unlocked.

The units must be MKS or SI: for a prismatic primitive, meters/second; for a revolute primitive, radians/second.

Summary of Joint Stiction Actuator inport signals

All the Simulink inports are one-component signals. Here is an example of a prismatic joint connected between two bodies and actuated with stiction:

Joint Stiction Actuator Simulink Inport Signals

Joint Stiction Actuator

Summary of Joint Stiction Actuator Input Signals		
Simulink Inport	Friction Model	Description
External Actuation	$F_{\text {ext }}$	External nonfrictional force/torque
Kinetic Friction	F_{K}	Kinetic friction
Forward Stiction Limit	$F_{\mathrm{S}}{ }^{\mathrm{f}}<0$	Static friction lower limit
Static Test Friction	$F_{\text {test }}$	Static test friction
Reverse Stiction Limit	$F_{\mathrm{S}}{ }^{\mathbf{r}}>0$	Static friction upper limit

Units

You specify units in the dialog box only for the external nonfrictional and kinetic friction forces/torques, $F_{\text {ext }}$ and F_{K}. These two friction signals are used to integrate the motion of the joint and have physical significance in the model. Thus units are necessary for $F_{\text {ext }}$ and F_{K}.

The other three signals are compared only to one another in the locking condition $F_{\mathrm{S}}{ }^{\mathrm{f}}<F_{\text {test }}<F_{\mathrm{S}}{ }^{\mathrm{r}}$. These friction signals are not used to integrate motion and thus do not have units set in the dialog box. But they must have the same implicit units for a valid comparison.

Caution The threshold velocity $v_{\text {th }}$ must be set greater than the Absolute tolerance in the Solver node of your model's Configuration Parameters dialog box to avoid a meaningless threshold value.

Never set Absolute tolerance to auto if stiction actuators are present in a model. A recommended setting is to make $v_{\text {th }}$ at least 10 times the Absolute tolerance value.

See "Controlling the Simulation" on page 5-10 for a discussion of setting simulation parameters.

Joint Stiction Actuator

Example
 The mech_dpen_sticky model in the Demos library has two revolute joints actuated with stiction. See "Joint Stiction Actuator Example: Mixed Static and Kinetic Friction" on page 4-51.

Stiction Theory
 Kinematics

v and a are the velocity and acceleration along/around a joint primitive axis. These quantities are relative between the two bodies at the joint ends and signed \pm to indicate forward or reverse. The joint directionality is set by the base (B)-follower (F) Body sequence of Bodies attached to the joint primitive being actuated.

Continuous Motion

A joint subject to stiction, if unlocked, moves in continuous motion. During this motion, you can apply two forces/torques at the joint primitive:

- A kinetic friction force/torque F_{K} :
- $F_{\mathrm{K}}<0$ retards forward motion
- $F_{\mathrm{K}}>0$ retards reverse motion
- An external, nonfrictional force/torque $F_{\text {ext }}$

Discrete Modes: Locked, Wait, Unlocked

Besides its continuous motion mode, a joint actuated by stiction has two other discrete modes. The Joint Stiction Actuator switches a joint primitive between locked and unlocked modes. In one mode, the joint locks rigidly; in the other, it moves with the kinetic friction and external nonfrictional forces/torques applied. The joint can also be in a wait mode, between locked and unlocked.

Unlocking. You specify the unlocking criteria by a two-condition threshold, constructed from four user-specified inputs.

- Joint unlocking threshold velocity $v_{\text {th }}>0$ via the block dialog box.
- Static friction limits $F_{\mathrm{S}}{ }^{\mathrm{f}}<0$ and ${F_{\mathrm{S}}}^{\mathrm{r}}>0$ for forward and reverse motion, and a static test friction $F_{\text {test }}$, all three specified via Simulink signals. The static test friction $F_{\text {test }}$ and forward/reverse limits $F_{\mathrm{S}}{ }^{\mathrm{f}}$ and $F_{\mathrm{S}}{ }^{\mathrm{r}}$ can be functions of the machine state and/or time.

The static test and kinetic frictions $F_{\text {test }}$ and F_{K} can be discontinuous, but should be physically sensible.

Joint Stiction Actuator

Locking. You specify the locking criterion with the velocity threshold alone.

- Joint locking threshold velocity $v_{\text {th }}>0$ via the block dialog box.

See the following "Discrete Joint Stiction Modes and Transition Conditions" figure.

Locked Mode

In this mode, v and a of the joint are zero. The static computed force/torque F_{S} at the joint is internally computed to maintain this mode: $F_{\text {ext }}+F_{\mathrm{S}}+F_{\mathrm{F}}-F_{\mathrm{B}}$ $=0$. The forces/torques $F_{\mathrm{B}}, F_{\mathrm{F}}$ are the forces/torques on the base and follower Bodies apart from those forces/torques acting at the joint.

The joint remains locked as long as $F_{\mathrm{S}}{ }^{\mathrm{f}}<F_{\text {test }}<F_{\mathrm{S}}{ }^{\mathrm{r}}$.
In most realistic friction models, you would set $F_{\text {test }}$ equal to the computed F_{S}.

Wait Mode

If the static test friction $F_{\text {test }}$ leaves the static friction range $\left[F_{\mathrm{S}}{ }^{\mathrm{f}}, F_{\mathrm{S}}{ }^{\mathrm{r}}\right.$], the joint has passed the first condition for unlocking, and the simulation enters wait mode, suspending the mechanical motion.

A search begins for a consistent state of all stiction-actuated joints in your model.

- The potential direction of motion after unlocking is determined by all the nonfrictional forces on the bodies.
- During the search, the net force/torque $F=F_{\mathrm{ext}}+F_{\mathrm{K}}$ at the joint primitive is computed, where F_{K} is the kinetic friction, and a is determined.
- For potential motion in the forward (reverse) direction, if $a<0$ ($a>0$), the search returns to the locked mode.

Once consistent modes for all stiction-actuated joints are found, mechanical motion restarts. The simulation integrates a to obtain v. When $|v|$ exceeds $v_{\text {th }}$, the second condition, the joint unlocks.

The wait mode prevents infinite cycling between locked and unlocked modes, although it can noticeably slow down the simulation. The mode search uses a nonphysical algebraic loop, which displays warnings at the MATLAB command line.

Joint Stiction Actuator

Unlocked Mode

In the unlocked mode, the joint primitive moves, actuated by the sum of the external, non-frictional force/torque $F_{\text {ext }}$ and the kinetic friction F_{K}.
The joint returns to the locked mode if v falls into the range $-v_{\text {th }}<v<+v_{\text {th }}$. If the simulation steps in time over this velocity range, it instead catches the zero of velocity with Simulink zero-crossing detection.

Discrete Joint Stiction Modes and Transition Conditions

See Also

Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Mechanical Branching Bar, Prismatic, Revolute

See "Actuating a Joint" on page 4-47. For trimming and linearization, see the "Case Studies" chapter.

In Simulink, see the Signal Routing Library and the Sources Library, and zero crossing detection.

Linear Driver

Purpose Specify a component of the vector difference of two Body CS origins as a function of time

Library Constraints \& Drivers
Description
The Linear Driver block specifies a component of the vector difference of Body coordinate system (CS) origins as a function of time.

Let $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ be the vector positions of the origins of CS1 on one Body, CS2 on the other Body, and $\boldsymbol{R}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$. The Linear Driver block specifies one of the vector components of $\boldsymbol{R}=(X, Y, Z)$, projected on to the World CS axes, as a function of time:

$$
X, Y, \text { or } Z=X(t=0), Y(t=0) \text {, or } Z(t=0)+f(t)
$$

You connect a Driver Actuator block to the Linear Driver.
The Simulink input signal into the Driver Actuator specifies the time-dependent driving function $f(t)$ and its first two derivatives, as well as their units. If you do not actuate Linear Driver, this block acts as a time-independent constraint that freezes the vector component between the two Body CS origins at its initial value $X(t=0), Y(t=0)$, or $Z(t=0)$ during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of bodies as specified functions of time. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Driver blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint \& Driver Sensor to any Driver and measure the reaction forces/torques between the driven bodies.

Dialog Box and Parameters

Connection
 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Current base

When you connect the base (B) connector port on the Linear Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Linear Driver base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Linear Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Linear Driver base and follower Body connector ports" figure.

Linear Driver

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Driver Actuator and Constraint \& Driver Sensor blocks to this Driver. The default is 0 .

To activate the Driver, connect a Driver Actuator.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis.

Base Body connector port

Linear Driver base and follower Body connector ports

Parameters World axis

In the pull-down menu, choose the component of the vector difference \mathbf{R} between the Body CS origins that you want to drive as a function of time. The components are measured with respect to the World CS axes. The choices are X, Y, or Z. The default is X.

See Also

Constraint \& Driver Sensor, Distance Driver, Driver Actuator
See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Drivers.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using drivers in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Machine Environment

Purpose

Library

Description

Env

Env

Set up the mechanical environment for a machine
Bodies

The Machine Environment block allows you to view and change the mechanical environment settings for one machine in your model.

Note A SimMechanics model consists of one or more machines. A machine is a complete, connected block diagram topologically separate from other complete block diagrams. Each machine must have one or more Ground blocks.

Exactly one Ground per machine must be connected to a Machine Environment block for your SimMechanics model to be valid.

This block determines the following settings for the machine to which it is connected:

- Parameters that control how the machine is simulated
- Settings to control how constraints are interpreted
- Settings to control how linearization is implemented
- Whether the machine is displayed in SimMechanics visualization

The Machine Environment Port and Connecting the Block

You connect this block to a Ground by enabling that Ground's Machine Environment port from the Ground dialog.

Machine Environment

Gravity as a Simulink Signal

This block also allows you to input gravity as a variable Simulink signal. If you choose to do this, a Simulink inport > also appears on the block for connection to a three-component Simulink signal line.

Opening the Simulink Configuration Parameters Dialog

You can open the Simulink Configuration Parameters dialog for viewing and editing by clicking the Open Configuration Parameters button on the lower left of the dialog.

Dialog Box and Parameters

In the lower half of its dialog, the Machine Environment block has four active panes that you can view and modify by selecting the corresponding tabs. You can apply your settings at any time by clicking Apply or OK.

- Parameters
- Constraints
- Linearization
- Visualization

Machine Environment

Configuring the Dynamics

Parameters	Constraints	Linearization	Visualization	
Analysis mode: Type of solution for machine's motion. Tolerances: Maximum permissible misalignment of machine's joints.				
Gravity vector		[0-9.810]	$\mathrm{m} / \mathrm{s}^{\wedge} 2$	\checkmark
Γ Input gravity as signal				
Machine dimensionality:		3D Only		\checkmark
Analysis mode:		Forward dynamics		\checkmark
Linear assembly tolerance:		$1 \mathrm{e}-3$		\checkmark
Angular assembly tolerance:		1e-3	rad	\checkmark

In this pane, you configure settings that control the mechanical dynamics.

Gravity vector

The value of this parameter is a MATLAB vector that specifies the magnitude and direction of gravitational acceleration in the model's world coordinate system. It must be a three-component vector. The default vector is [0-9.810]. This field is disabled if you choose to input gravity as a signal.
The default units are $\mathrm{m} / \mathrm{s}^{2}$ (meters per square second). Use the pull-down menu to the right if you want to reset the units.

Input gravity as signal

Select this check box if you want to disable the Gravity vector field and instead input gravity as a variable Simulink signal. The default is unselected.

If you select this check box, a Simulink inport appears on the block in addition to the existing Machine Environment port. You input the gravity vector as a three-component Simulink signal to this port. The components are, respectively, x, y, and z.

Machine Environment

Machine dimensionality

In the pull-down menu, select in how many dimensions you want SimMechanics to simulate your machine: in 3D Only or 2D Only, or let SimMechanics choose for you with Auto. The default is 3D Only.

You must take care, if you choose 2D Only, that the machine actually moves in only two dimensions. If it does not, the simulation stops with an error.

Analysis mode

Specifies the type of analysis to be performed during the simulation. Choose one from the pull-down menu.

Analysis Mode	Description
Forward dynamics	Computes the positions and velocities of the system's bodies, given forces, torques, and initial conditions. This is the default mode.
Inverse dynamics	Computes the forces and torques required to produce the specified motions of an open system.
Kinematics	Computes the forces and torques required to produce the specified motions of a closed-loop system.
Trimming	Variant of Forward Dynamics mode to be used with the Simulink trim command. Determines steady-state or other points in system state space.

Linear assembly tolerance

Maximum position error allowed between bodies connected by prismatic joints. The default is $1 \mathrm{e}-3 \mathrm{~m}$. Use the menu on the right to set the units.

Angular assembly tolerance

Maximum angular error allowed between bodies connected by revolute joints. Default is 1e-3 rad. Use the menu on the right to set the units.

Machine Environment

Interpreting the Constraints

In this pane, you tell SimMechanics how to interpret constraints in machines that contain blocks from the Constraints \& Drivers library.

Constraint solver type

Type of solver used to solve constraints on the mechanical system's states specified by the machine's constraint and driver blocks. Choose one from the pull-down menu.

Solver Type	Description
Stabilizing	Adds a self-correcting term to the state equations to be solved that stabilizes the numerical solution, i.e., causes it to evolve toward, rather than drift away from, the actual solution. This is the default.
Tolerancing	Solves the constraints on the system's states to a specified degree of accuracy.
Machine precision	Solves the constraints to the numerical precision of the computer on which the simulation is running.

Relative tolerance

The relative tolerance used by the tolerancing constraint solver to determine when to stop refining a solution. Default is $1 \mathrm{e}-4$.

Enabled only if Constraint solver type is set to Tolerancing.

Machine Environment

Absolute tolerance

The absolute tolerance used by the tolerancing constraint solver to determine when to stop refining the solution of a machine state. Default is 1e-4.

Enabled only if Constraint solver type is set to Tolerancing.

Use robust singularity handling

Select this check box if you want Simulink to take extra steps to handle singularities in a system's equations of motion. The default is unselected.

This option increases the length of time required to solve a system's equations of motion regardless of whether they have singularities. Hence, you should select this option only as a last resort, i.e., only if the Simulink solvers cannot otherwise solve the system's equations of motion or require an excessively long time to do so.

Configuring Linearization

In this pane, you tell SimMechanics how to linearize your machine.

State perturbation type

Specifies the type of state perturbation used by linmod to linearize a machine. The default is Fixed.

- Adaptive recomputes the size of the perturbation used at each step in the linearization process to ensure accurate computation of the linearization coefficients. It starts with the entry in the Perturbation size field as an initial guess.
- Fixed uses the perturbation size specified in the Perturbation size field for every step.

Machine Environment

Perturbation size

Specifies the relative size of the perturbation used by the Fixed perturbation option. Specifies the relative size of the initial guess perturbation used by the Adaptive perturbation type. The perturbation size is relative to the size of the state being perturbed. The default is $1 \mathrm{e}-5$.

Turning Machine Visualization On or Off

Parameters \mid Constraints \mid Linearization \mid Visualization

To enable visualization and animation of connected machine, select Visualize machine.
Visualization and/or animation must also be enabled in the SimMechanics node of the Configuration Parameters dialog.
V Visualize machine

In this pane, you determine whether SimMechanics visualization displays this machine.

Visualize machine

Select this check box if you want the machine to which this block is connected to appear in the SimMechanics visualization window. The default is selected.

See Also
 Ground

For more about SimMechanics models and machines, see "Modeling Machines" on page $4-2$. For more about using Grounds and creating valid SimMechanics models, see "Modeling Bodies and Grounds" on page 4-8. For more about modeling constraints, see "Modeling Constraints and Drivers" on page 4-35.

For more about running SimMechanics with Simulink, see "Running SimMechanics Models in Simulink" on page 5-2, "Configuring a Machine's Mechanical Environment" on page 5-3, and "Controlling the Simulation" on page 5-10.

The "Visualizing and Animating Machines" chapter discusses starting, configuring, and using SimMechanics visualization. See "Starting SimMechanics Visualization" on page 6-2.

Machine Environment

The "Case Studies" chapter presents an in-depth look at the various motion analysis modes available in SimMechanics, starting with "Dynamics of Mechanical Systems" on page 8-2. For the Inverse Dynamics and Kinematics modes, see "Finding Forces from Motions" on page 8-6. For the Trimming mode, see "Trimming Mechanical Models" on page 8-16. To learn how to linearize mechanical models, see "Linearizing Mechanical Models" on page 8-28.

See the relevant entries in the Glossary: dynamics, ground, kinematics, machine, machine precision constraint, stabilizing constraint, and tolerancing constraint.

For more about configuring simulations in Simulink, consult the section on the Configuration Parameters dialog in the Simulink documentation.

Mechanical Branching Bar

Purpose

Library Utilities

Description

Map multiple sensor/actuator lines to one sensor/actuator port on a Joint, Constraint, or Driver, or to one Body coordinate system port on a Body

The Mechanical Branching Bar bundles multiple actuator and sensor connection lines into one line, allowing you to connect multiple actuators and/or sensors to a single connector port on a Joint, Constraint, or Driver, or to a single Body coordinate system (CS) port on a Body. You can choose any number of sensor/actuator ports on the Mechanical Branching Bar.

- In the case of a Body, a single Body CS port represents a single Body CS. If the needed Body CS port does not exist, open the Body dialog and create one. You can connect the selected Body CS to multiple Body Actuators and Sensors through the Mechanical Branching Bar.
- In the case of a Joint, you need a single sensor/actuator port on the Joint. If the needed port does not exist, open the Joint's dialog and create one. You can connect this sensor/actuator port to multiple Actuators and Sensors through the Mechanical Branching Bar.
Using the Mechanical Branching Bar, you can connect a Joint block to any combination of Joint Sensors, Joint Actuators, Joint Initial Condition Actuators, and Joint Stiction Actuators. The Actuator and Sensor dialogs display the Joint's primitives as if they were directly connected to the Joint.
- The procedure for Constraints and Drivers is the same as it is for Joints, except that you need to choose to measure reaction forces/torques or to actuate motions.

Cascading Mechanical Branching Bars and Avoiding Closed Loops

You can connect multiple Mechanical Branching Bar blocks in series, creating a cascade. Connect the mechanical side of the first Branching Bar to a Joint, Constraint, Driver, or Body. Then connect its sensor/actuator side to the mechanical side of the second Branching Bar, and so on.

The only restriction on cascading Mechanical Branching Bars is that you must avoid connecting them into closed loops.

The following diagram shows a cascade, starting at a Body.

Mechanical Branching Bar

Caution To avoid simulation errors, you should not create a cascade of Mechanical Branching Bars that closes on itself in a loop.

You should not connect the mechanical side of one Mechanical Branching Bar to the mechanical side of another Mechanical Branching Bar. You should also not connect the sensor/actuator side of one Mechanical Branching Bar to the sensor/actuator side of another Mechanical Branching Bar.

Dialog Box and Parameters

The dialog box has one active area, Connection parameters.

Mechanical Branching Bar

Connection Parameters

Example

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Actuator and Sensor blocks to the Mechanical Branching Bar. The default is 2.

Without the Mechanical Branching Bar, you must connect multiple Sensors and Actuators to a Joint by creating a sensor/actuator port on the Joint for each Sensor and each Actuator:

With the Mechanical Branching Bar block, you can combine all the sensor and actuator ports for a single Joint into one sensor/actuator port:

Mechanical Branching Bar

Mechanical Branching Bar
See Also
Body, Body Actuator, Body Sensor, Constraint \& Driver Sensor, Driver Actuator, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator

Parallel Constraint

Purpose

Library
Description

Constrain the body axis vectors of two bodies to be parallel

Constraints \& Drivers

The two Bodies connected by a Parallel Constraint are restricted in their relative rotational motion. The Parallel Constraint is connected on either side to a Body CS, one on each Body. A vector \mathbf{a}_{B} defined in one Body CS on the base body remains parallel to a second vector \mathbf{a}_{F} defined in another Body CS on the follower body.

The Parallel Constraint block requires that:

$$
\left|\mathbf{a}_{\mathrm{B}} *_{\mathbf{F}}\right| /\left(\left|\mathbf{a}_{\mathrm{B}}\right|\left|\mathbf{a}_{\mathrm{F}}\right|\right)=1 .
$$

You specify the initial direction to which both vectors must remain parallel.
Constraints restrict relative degrees of freedom (DoFs) between a pair of bodies. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Constraint blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Constraint are ordered as base and follower, fixing the direction of relative motion.

Parallel Constraint is assembled: the Body CS origin on the base body must be initially collocated with the Body CS origin on the follower body, to within assembly tolerance.

You can connect a Constraint \& Driver Sensor to any Constraint block, but not a Driver Actuator. The Constraint \& Driver Sensor measures the reaction forces/torques between the constrained bodies.

Parallel Constraint

Dialog Box and Parameters

Connection
 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Current base

When you connect the base (B) connector port on the Parallel Constraint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Parallel Constraint base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Parallel Constraint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Parallel Constraint base and follower Body connector ports" figure.

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Constraint \& Driver Sensor blocks to this Constraint. The default is 0 .

Parallel Constraint

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower rotating in the right-handed sense about the rotation axis.

Parallel Constraint base and follower Body connector ports

Parameters

Parallel constraint axis [xyz]
Enter the axis vector defining the initial direction of the two body axis vectors $\mathbf{a}_{b}, \mathbf{a}_{f}$. These body axis vectors are restricted to always remain parallel to this initial axis. The default is [$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the initial Parallel constraint axis is oriented with respect to. This CS also determines the absolute meaning of reaction forces/torques at this Constraint. The default is WORLD.

See Also Angle Driver, Constraint \& Driver Sensor, Velocity Driver
See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Constraints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using constraints in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Planar

Purpose	Represent a composite joint with two translational DoFs and one rotational DoF, with the rotational axis orthogonal to the plane of the translational axes
Library	Joints
Description	The Planar block represents a composite joint with two translational degrees of freedom (DoFs) as two prismatic primitives and one rotational DoFs as one revolute primitives. The rotation axis must be orthogonal to the plane defined by the two translation axes.

Caution A joint with two prismatic primitives becomes singular if the two translation axes become parallel. The simulation stops with an error in this case.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Planar block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Dialog Box and

 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Planar block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Planar base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive P1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Planar block to a Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following "Planar base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive R1 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motions of prismatic and revolute primitives are specified in linear and angular units, respectively.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Base Body connector port

Planar base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Planar has an entry line. These lines specify the direction of the axes of action of the DoFs that the Planar represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Planar block: prismatic primitives P1, P2 and revolute primitives R1.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation
- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two prismatic axes cannot be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also
In-Plane, Prismatic, Revolute
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Point-Curve Constraint

Purpose

 LibraryDescription

Constrain the motion of a point on one body to be along a curve on another body

Constraints \& Drivers

The two Bodies connected by a Point-Curve Constraint can only move relative to one another if a point on one body moves along a curve on the other body. The point on one body is the origin of the Body coordinate systems (CS) to which one side of the Point-Curve Constraint is connected. The corresponding curve starting point on the other body is the origin of the Body CS to which the other side of the Point-Curve Constraint is connected.

Specifying the Curve You specify the curve function on the second body as a spline with break points and end conditions. The spline is a piecewise cubic polynomial, with the pieces joined at user-specified breakpoints:

$$
\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots,\left(x_{\mathrm{N}}, y_{\mathrm{N}}, z_{\mathrm{N}}\right)
$$

and boundary conditions applied at the spline's endpoints, $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{N+1}, y_{N+1}, z_{N+1}\right)$. The spline curve and its first two derivatives are continuous at each breakpoint.

Constraints restrict relative degrees of freedom (DoFs) between a pair of bodies. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Constraint blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Constraint are ordered as base and follower, fixing the direction of relative motion.

For the Point-Curve Constraint, the base is the Body carrying the Point, and the follower is the Body carrying the Curve. The Point-Curve Constraint is assembled: the Body CS origin on the base (Point) body must initially be collocated with the Body CS origin on the follower (Curve) body, to within assembly tolerance.

You can connect a Constraint \& Driver Sensor to any Constraint block, but not a Driver Actuator. The Constraint \& Driver Sensor measures the reaction forces/torques between the constrained bodies.

Point-Curve Constraint

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Spline specification. It stores the defining information of a single spline for the constraint.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Point-Curve Constraint block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Point-Curve Constraint base and follower Body connector ports" figure.

This Body CS origin is the point of the Point-Curve Constraint.

Current follower

When you connect the follower (F) connector port on the Point-Curve Constraint block to a Body CS Port on a Body, this parameter is

Point-Curve Constraint

automatically reset to the name of this Body CS. See the following "Point-Curve Constraint base and follower Body connector ports" figure.

This Body CS origin is the starting point of the curve of the Point-Curve Constraint.

Number of sensor ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Constraint \& Driver Sensor blocks to this Constraint. The default is 0 .

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis.

Point-Curve Constraint base and follower Body connector ports

Specifying the Spline

The Point-Curve Constraint dialog box gives you two ways to specify the spline curve. The first way is entering in this dialog box the coordinates of breakpoints and endpoints on the follower and is valid for defining curves in up to three dimensions.

The second way is graphically displaying and editing the spline in the Edit spline editor (see following), valid only for two-dimensional curves on the follower.

Break points

List here the x-components, the y-components, and the z-components, respectively, of the breakpoints and endpoints that define the spline:
\mathbf{X} : enter $\left(x_{0}, x_{1}, \ldots, x_{N+1}\right)$ as a vector.
Y: enter $\left(y_{0}, y_{1}, \ldots, y_{N+1}\right)$ as a vector.
\mathbf{Z} : enter $\left(z_{0}, z_{1}, \ldots, z_{N+1}\right)$ as a vector.

Point-Curve Constraint

All three fields require nonnull entries. The number of components in each vector should be the same. Exception and shortcut: if all the \mathbf{Z} components are the same, just enter one number in the \mathbf{Z} vector. The Break points list replicates this number to expand out a full vector.

If there are no \mathbf{X} and/or \mathbf{Y} components, you must still enter [$0 \quad 0$] in that/those field(s). If there are no \mathbf{Z} components, you must still enter at least [0] in the \mathbf{Z} field (using the replication/expansion shortcut).

The pull-down menu for each spatial dimension lists the history of those previous breakpoints created by the graphical spline editor (see following) within a single dialog box session. Closing the dialog box destroys this history, and only the current breakpoint list is retained.

Units

In the pull-down menu, choose the linear units for distances on the constrained bodies. The default is m (meters).

End conditions

In the pull-down menu, choose the type of end (boundary) condition on the spline curve. The possible conditions are:

End Condition	Definition	Minimum Number of Points
natural	Match each endslope to the slope of the cubic that fits the first four points at that end	Two points
not-a-knot	Only the curve and its first derivative are continuous at first and last interior points	Four points
periodic	Match the first and second derivatives of the two endpoints	Two points, three recommended

The default is natural. The periodic end condition closes the spline.

Allow the point to fall off the curve

If the check box is selected, the base point continues with unconstrained motion if it reaches an endpoint and leaves the spline on the follower. The

Point-Curve Constraint

direction of motion at the instant the base point leaves the constraint is tangent to the spline.

If the check box is unselected, and the base point attempts to leave the spline on the follower, the simulation stops with an error. The default is unselected.

Edit spline

Click here to open the optional Edit spline dialog box.
The Edit spline dialog box provides alternative numerical entry and graphical editing methods for defining the constraint spline. But it can define only two-dimensional curves in the $x-y$ coordinate directions on the follower Body. The Edit spline editor ignores any z-components in existing breakpoints.

Point-Curve Constraint

Edit Spline
The numerical entry area lies on the left side of the Edit spline dialog box, the graphical editing area on the right side.

Point-Curve Constraint Spline Editor

Graphical Editing of Spline Points

1 To place a breakpoint in the graphical display, place your cursor at the position where you want the breakpoint. The Location display in the lower right indicates your current cursor coordinates in the curve display.

Point-Curve Constraint

2 Then click at the desired point. A circle appears where you clicked, and simultaneously, the breakpoint is listed in the Breakpoints ($\mathbf{x}-\mathbf{y}$) list. Continuing to add breakpoints generates the spline (red curve).
3 Use the Graphical toolbar controls to edit the spline graphically in the display:

- Remove points by clicking on the Delete breakpoints icon. Your cursor turns into an eraser symbol. With it, select and click the breakpoints you want to delete.
- Insert new (interior) breakpoints by clicking on the Insert breakpoints icon. Your cursor acquires a small circle. Click on the positions, near the existing curve, where you want the new breakpoints. The editor modifies the spline to fit the new breakpoints.
- Add new endpoints and extend the curve by clicking on the Append breakpoints icon. Your cursor acquires a small circle. Click on the positions, near the existing endpoints, to where you want to extend the curve. The editor modifies the spline to fit the new endpoints.
- Move existing endpoints by clicking on the Move breakpoints icon. Click and drag the breakpoints you want to move, then drop them where you want them.
The editor modifies both the spline red curve in the graphical display and the Breakpoints ($\mathbf{x}-\mathbf{y}$) list as you make these changes.

Additional graphical toolbar controls:

- Zoom In/Zoom Out and Auto Fit: Standard MATLAB Graphics zooming and auto resizing of graphics display.
- Grid On/Off: Turn the graphical display x-y grid on or off.

Point-Curve Constraint

- Axes properties: Edit properties of graphical display.

Numerical Editing of Spline Points

Use the numerical entry controls, instead of the graphical editing tools, to edit breakpoints by text entry.

Breakpoints (x-y)

You can also add, delete, and edit the breakpoints via this Breakpoints list:
Select an existing breakpoint by highlighting it with your cursor.
Add a breakpoint by moving the highlighted selection to the empty line below the last breakpoint with your cursor control.

In \mathbf{x} : and \mathbf{y} : enter the x - and y-coordinates of the currently selected breakpoint.

Update breakpoint

After editing an existing breakpoint or entering a new one, update the breakpoint list by clicking here. The new or changed breakpoint appears in the graphical display as a circle.

Delete point

Click here to delete the currently selected breakpoint.

Delete all

Click here to delete all the breakpoints in the Breakpoint list.

End conditions

In the pull-down menu, choose the type of end (boundary) condition on the spline curve. The possible conditions are natural, not-a-knot, and periodic. The default is natural.

Closing the Edit spline Dialog Box

Clicking on Apply or OK updates the breakpoints stored in the main Point-Curve Constraint dialog box.

Previous breakpoint lists are stored in the history pull-down menus of the main Point-Curve Constraint dialog box's Break points list. This history is

Point-Curve Constraint

destroyed if you close the main dialog box, and only the current Breakpoint list is retained.

See Also Constraint \& Driver Sensor
See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Constraints.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using constraints in closed loops.

See "Constraining and Driving Motion" on page 9-4.
For more about representing curves as splines, see the Spline Toolbox User's Guide.

Prismatic

Purpose Represent a prismatic joint with one translational degree of freedom Library Joints

Description

The Prismatic block represents a single translational degree of freedom (DoF) along a specified axis between two bodies. A prismatic joint is one of SimMechanics primitive joints, along with revolute and spherical.

The Prismatic block is assembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, and the origins of these Body CSs must lie along the prismatic axis, to within assembly tolerances. These Body CS origins do not need to be collocated in space.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axis.

Prismatic motion of follower (blue) relative to base (red)

Dialog Box and

 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Prismatic block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Prismatic base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Prismatic block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Prismatic base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

Prismatic

The motion of a Prismatic is specified in linear units.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis.

Prismatic base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. They specify the direction of the translational DoF that the Prismatic represents.

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Prismatic, there is only one primitive joint, a prismatic, labeled P1.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Prismatic, there is only one primitive type, labeled Prismatic.

Axis of translation [x y z]

Enter here as a three-component vector the directional axis along which this translational DoF can move. The default vector is [llll 0001$]$. The axis is a directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of translation is oriented with respect to. This CS also determines the absolute meaning of force and motion along the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Aves Advanced
    \Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Disassembled Prismatic, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator, Revolute, Spherical

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Revolute

Purpose Represent an assembled revolute joint with one rotational degree of freedom

 Library JointsDescription

The Revolute block represents a single rotational degree of freedom (DoW) about a specified axis between two bodies. The rotational sense is defined by the right-hand rule. A revolute joint is one of SimMechanics primitive joints, along with prismatic and spherical.

The Revolute block is assembled: you must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point, and the origins of these Body CSs must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axis.

Revolute motion of follower (blue) relative to base (red)

Dialog Box and Parameters

Connection
 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Current base

When you connect the base (B) connector port on the Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. They specify the direction of the rotation axis of the DoF that the Revolute represents.

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Revolute, there is only one primitive joint, a revolute, labeled R1.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Revolute, there is only one primitive type, labeled Revolute.

Axis of rotation [x y z]

Enter here as a three-component vector the directional axis about which this rotational DoF can move. The default vector is [$\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$. The axis is a directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of rotation is oriented with respect to. This CS also determines the absolute meaning of torque and motion about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

-Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Disassembled Revolute, Joint Actuator, Joint Initial Condition Actuator, Joint Sensor, Joint Stiction Actuator, Prismatic, Spherical

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Revolute-Revolute

Purpose	Represent a composite joint composed of two revolute primitives spatially separated by a massless connector of constant length
Library	Joints/Massless Connectors
Description	The Revolute-Revolute block represents a composite joint composed of two revolute joint primitives. The Body coordinate systems (CSs) on either side of the Joint are each connected to a revolute primitive. The primitives are separated spatially by a vector of constant length but variable direction connecting the two Body CS origins. Both revolute primitives are assembled.

Caution This joint becomes singular if the two revolute primitive axes align with the vector separating the primitives. The simulation stops with an error in this case.

You specify the two revolute axes of these two joint primitives in the dialog box. The distance separation between the two axes is computed automatically from the Body CS origins to which the Joint is connected. This distance separation (the magnitude of the vector between the Body CS origins) remains fixed at its initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.
You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the directions of the joint axes.

Massless Connector between Revolute and Revolute Joints

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Revolute-Revolute

Connection Parameters

Parameters

Current base

When you connect the base (B) connector port on the Revolute-Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute-Revolute base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Revolute-Revolute block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute-Revolute base and follower Body connector ports" figure.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the base or follower rotating in the right-handed sense about its respective rotation axis.

Revolute-Revolute base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. They specify the direction of the rotation axes of these DoFs that the Revolute-Revolute represents.

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Revolute-Revolute, there are two revolute primitives, labeled R1 and R2, connecting to base and follower, respectively.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Revolute-Revolute, there is only one primitive type, labeled Revolute.

Axis of rotation [x y z]

Enter here as a three-component vector the directional axis about which these rotational DoFs can move. The default vectors are [$\left.\begin{array}{lll}0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1\end{array}\right.$ $0]$. The axes are directed vectors whose overall signs matter.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axes of rotation are oriented with respect to. These CSs also determine the absolute meaning of torque and motion about the primitive axes. The defaults are WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

Revolute-Revolute

See Also
 Revolute

See "Modeling Joints" on page 4-17 for more on representing DoFs with Massless Connectors.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Revolute-Spherical

Purpose

Library
Description

Represent a composite joint composed of a revolute and a spherical primitive spatially separated by a massless connector of constant length

Joints/Massless Connectors
The Revolute-Spherical block represents a composite joint composed of a revolute and a spherical joint primitive. The base Body coordinate system (CS) on one side of the Joint is connected to the revolute primitive, and the follower Body CS is connected to the spherical primitive. The primitives are separated spatially by a vector of constant length but variable direction connecting the two Body CS origins. Both primitives are assembled.

Caution This joint becomes singular if the revolute primitive axis aligns with the vector separating the primitives. The simulation stops with an error in this case.

You specify the revolute axis of the revolute joint primitives in the dialog box. The distance separation between the two axes is computed automatically from the Body CS origins to which the Joint is connected. This distance separation (the magnitude of the vector between the Body CS origins) remains fixed at its initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.
You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axis.

Revolute-Spherical

Massless Connector between Revolute and Spherical Joints

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Revolute-Spherical

Connection Parameters

Parameters

Current base

When you connect the base (B) connector port on the Revolute-Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute-Spherical base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Revolute-Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Revolute-Spherical base and follower Body connector ports" figure.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the base rotating in the right-handed sense about its rotation axis or the follower pivoting as shown for the Spherical Joint.

Revolute-Spherical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. They specify the direction of the rotation axis of one of the DoFs that Revolute-Spherical represents.

Revolute-Spherical

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Revolute-Spherical, there are one revolute and one spherical primitive, labeled R1 and S, connecting to base and follower, respectively.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Revolute-Spherical, there are two primitive types, labeled Revolute and Spherical.

Axis of action [x y z]

Enter here as a three-component vector the directional axis about which the rotational DoF can move. The default vector is $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. The axis is a directed vector whose overall sign matters.

This field is not active for the Spherical primitive.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of rotation is oriented with respect to. This CS also determines the absolute meaning of torque and motion about the primitive axis. The default is WORLD.

This field is not active for the Spherical primitive.
The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Revolute-Spherical

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also
Revolute, Spherical
See "Modeling Joints" on page 4-17 for more on representing DoFs with Massless Connectors.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

RotationMatrix2VR

Purpose

Library
Description

RotationMatrix2VR

Dialog Box and

 ParametersConvert a 3-by-3 rotation matrix to an equivalent VRML form of rotation axis and angle

Utilities

A rotation with respect to an initial orientation has many equivalent representations. A common and important one is the 3-by-3 orthogonal rotation matrix R, where $R^{-1}=R^{\mathrm{T}}$ and $R^{\mathrm{T}} R=R R^{\mathrm{T}}=I$, the 3-by-3 identity matrix.
Another important representation is the combination of rotation axis (a unit vector \mathbf{n}) and angle of rotation θ about that axis. The sign of rotation follows the right-hand-rule.

The RotationMatrix2VR block converts the 3-by-3 rotation matrix representation of orientation to its equivalent representation as a rotation axis and angle about that axis, the form used in Virtual Reality Modeling Language (VRML) for orienting bodies. The input and output signals are bundled Simulink signals.

The most common use of rotations is to represent the orientation of a body with respect to some coordinate system (CS) axes.

The dialog box has no active areas.

RotationMatrix2VR

Representations of rotation signals

The rotation matrix R has the form:

$$
\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
$$

The input signal to the RotationMatrix2VR block is the R matrix components passed column-wise and bundled into a single 9-component Simulink signal: [R11 R21 R31 R12].

The output signal is the equivalent rotation represented as the axis of rotation, a unit vector $\mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$, with

$$
\mathbf{n} * \mathbf{n}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1,
$$

and the angle of rotation θ about that axis. The sign of the rotation follows the right-hand rule. The output signal is bundled into a single 4-component Simulink signal:

$$
\left[n_{x} n_{y} n_{z} \theta\right]
$$

See Also

Body
See "Body Motion in SimMechanics" on page 3-3 and "How SimMechanics Represents Body Orientation" on page 3-9 for more details on representing body rotations.

See entries on axis-angle rotation, Euler angles, quaternion, and rotation matrix in the "Glossary" for summaries of body orientation representations.

For more on virtual reality and VRML, see the Virtual Reality Toolbox User's Guide.

Purpose Represent a composite joint with one translational DoF and one rotational DoF, with parallel translation and rotation axes and a linear pitch constraint between translational and rotational motion

Library

Description \cdots Joints

The Screw block represents a composite joint with one translational degree of freedom (DoF) as one prismatic primitive and one rotational DoF as one revolute primitive. The translation and rotation axes are parallel. The translational and rotational DoFs are constrained by a pitch constraint to have proportional motion.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Screw block is assembled: the origins of these Body CSs must lie along the primitive axes. But the Body CS origins on either side of the Joint do not need to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axis.

Dialog Box and Parameters

The dialog box has three active areas, Connection parameters, Parameters, and Pitch parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Screw block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Screw base and follower Body connector ports" figure.

The base Body is automatically connected to the joint primitive R1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Screw block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Screw base and follower Body connector ports" figure.

The follower Body is automatically connected to the joint primitive R1 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of revolute primitives is specified in angular units.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Screw base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Screw has an entry line. These lines specify the direction of the axes of action of the DoFs that the Screw represents.

Name - Primitive

The primitive list states the name and type of the joint primitive that makes up the Screw block: revolute primitive R1.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of this primitive and its corresponding DoF:

- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Axes Advanced
    \Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation.
SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

Pitch Parameters

The Pitch parameters control how far the screw translates for each revolution.

Screw

Pitch

Linear distance the screw travels along the screw axis for each complete revolution (turn) of 2π radians $\left(360^{\circ}\right)$. The default is 1 .

Units (per revolution)

In the pull-down menu, choose the units for the pitch linear distance. The default is mm (millimeters).

See Also

Cylindrical, Prismatic, Revolute
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose

Library

Description

Represent a composite joint with three translational and three rotational DoFs
Joints
The Six-DoF block represents a composite joint with three translational degrees of freedom (DoFs) as three prismatic primitives and three rotational DoFs as one spherical primitives. There are no constraints among the primitives. Unlike Bushing, Six-DoF represents the rotational DoFs as one spherical, rather than as three revolutes.

Caution A joint with three prismatic primitives becomes singular if two or three of the translation axes become parallel. The simulation stops with as error in this case.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Six-DoF block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Six-DoF

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the Six-DoF block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Six-DoF base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive P1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Six-DoF block to a Body CS Port on a Body, this parameter is automatically reset to the name
of this Body CS. See the following "Six-DoF base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive S in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of prismatic primitives is specified in linear units. The motion of spherical primitives is specified by a dimensionless quaternion.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive spherical motion is the follower rotating in the right-handed sense as shown in the Spherical block figure.

Six-DoF base and follower Body connector ports

Parameters

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Six-DoF has an entry line. These lines specify the direction of the axes of action of the DoFs that the Six-DoF represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Six-DoF block: prismatic primitives P1, P2, P3, and spherical primitive S .

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation

Six-DoF

- Spherical: field is not active

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, no two of the prismatic axes can be parallel.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Aves Advanced
    \ Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Bushing, Gimbal, Prismatic, Spherical
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Purpose \begin{tabular}{l}
Represent an assembled spherical joint with three rotational degrees of

freedom

Joints

Description

The Spherical block represents three rotational degrees of freedom (DoFs) at a
single pivot point, a "ball-in-socket" joint. Two rotational DoFs specify a
directional axis, and a third rotational DoF specifies rotation about that
directional axis. The sense of each rotational DoF is defined by the right-hand
rule, and the three rotations together form a right-handed system. A spherical
joint is one of the SimMechanics primitive joints, along with prismatic and
revolute.

The Spherical block is assembled: you must connect each side of the Joint block
to a Body block at a Body coordinate system (CS) point, and the origins of these
Body CSs must be spatially collocated points, within assembly tolerances.

You cannot connect an Actuator to a Spherical. Unlike the Gimbal block, the
Spherical block cannot become singular.
You can connect all Joint blocks to two and only two Body blocks, and Joints
have a default of two connector ports for connecting to base and follower
Bodies.
Any Joint block represents only the abstract relative motion of two bodies, not
the bodies themselves.

\end{tabular}

Spherical

Spherical motion of follower (blue) relative to base (red)

Dialog Box and

 ParametersThe dialog box has two active areas, Connection parameters and Parameters.

Connection Parameters

Parameters

Current base

When you connect the base (B) connector port on the Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Spherical base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Spherical base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Sensor blocks to this Joint. The default is 0. A Spherical cannot be connected to a Joint Actuator.

The motion of a Spherical is three DoFs specified in quaternion form.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower rotating in the right-handed sense as shown in the figure above.

Spherical base and follower Body connector ports

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are automatic. They specify the orientation of the spherical DoF that the Spherical represents.

Spherical

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Spherical, there is only one primitive joint, a spherical, labeled S.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Spherical, there is only one primitive type, labeled Spherical.

Reference orientation [x y z]

This field is not active.

Reference csys

This field is not active.
The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Axes Advanced
    \GammaMark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also Disassembled Spherical, Gimbal, Joint Sensor, Prismatic, Revolute
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Spherical-Spherical

Purpose Represent a composite joint composed of two spherical primitives spatially separated by a massless connector of constant length

Library Joints/Massless Connectors
Description

The Spherical-Spherical block represents a composite joint composed of two spherical joint primitives. The Body coordinate systems (CSs) on either side of the Joint are connected to the spherical primitives. The primitives are separated spatially by a vector of constant length but variable direction connecting the two Body CS origins. Both primitives are assembled.

The distance separation between the two axes is computed automatically from the Body CS origins to which the Joint is connected. This distance separation (the magnitude of the vector between the Body CS origins) remains fixed at its initial value during the simulation. This initial value must be nonzero.

You cannot connect an Actuator or Sensor to a Massless Connector.
You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the directions of the joint axes.

[^4]
Spherical-Spherical

Dialog Box and

 Parameters
Connection
 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Current base

When you connect the base (B) connector port on the Spherical-Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Spherical-Spherical base and follower Body connector ports" figure.

Current follower

When you connect the follower (F) connector port on the Spherical-Spherical block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Spherical-Spherical base and follower Body connector ports" figure.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the base or follower pivoting as shown by the motion figure in the Spherical block reference page.

Spherical-Spherical

Spherical-Spherical base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are automatic. They specify the orientation of the spherical DoFs that the Spherical-Spherical represents.

Name

This column automatically displays the name of each primitive joint contained in the Joint block. For Spherical-Spherical, there are two spherical primitives, labeled S1 and S2, connecting to base and follower, respectively.

Primitive

This column automatically displays the type of each primitive joint contained in the Joint block. For Spherical-Spherical, there is only one primitive type, labeled Spherical.

Reference orientation [x y z]

These fields are not active.

Reference csys

These fields are not active.

Spherical-Spherical

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

```
Parameters
    Aves Advanced
    \ Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.
If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also

Spherical
See "Modeling Joints" on page 4-17 for more on representing DoFs with Massless Connectors.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Telescoping

Purpose Represent a composite joint with one translational and three rotational DoFs

Library Joints

Description

The Telescoping block represents a composite joint with one translational degree of freedom (DoF) as one prismatic primitive and three rotational DoFs as one spherical primitive. There are no constraints among the primitives. Unlike Bearing, Telescoping represents the rotational DoFs as one spherical, rather than as three revolutes.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Telescoping block is assembled: the origins of these Body CSs must lie along the primitive axes, and the Body CS origins on either side of the Joint must be spatially collocated points, to within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify a reference CS to define the direction of the joint axis.

Dialog Box and

 Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Telescoping block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Telescoping base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive S in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Telescoping block to a Body CS Port on a Body, this parameter is automatically reset to the

Telescoping

name of this Body CS. See the following "Telescoping base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive P1 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of prismatic primitives is specified in linear units. The motion of spherical primitives is specified by a dimensionless quaternion.

The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive spherical motion is the follower rotating in the right-handed sense as shown in the Spherical block figure.

Telescoping base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Telescoping has an entry line. These lines specify the direction of the axes of action of the DoFs that Telescoping represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Telescoping block: spherical primitive S and prismatic primitives P 1 .

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Prismatic: axis of translation
- Spherical: field is not active

Telescoping

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also
 Bearing, Prismatic, Six-DoF, Spherical

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Universal

Purpose	Represent a composite joint with two rotational DoFs
Library	Joints
Description	The Universal block represents a composite joint with two rotational degrees of freedom (DoFs) as two revolute primitives. There are no constraints among the primitives.

Caution A joint with two revolute primitives becomes singular if the two rotation axes become parallel ("gimbal lock"). The simulation stops with an error in this case.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Universal block is assembled: the origins of these Body CSs must be spatially collocated points, within assembly tolerances.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves. You must specify reference CSs to define the directions of the joint axes.

Universal

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Universal block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Universal base and follower Body connector ports" figure.

The base Body is automatically connected to the first joint primitive R1 in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Universal block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Universal base and follower Body connector ports" figure.

The follower Body is automatically connected to the last joint primitive R2 in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Actuator and Joint Sensor blocks to this Joint. The default is 0 .

The motion of revolute primitives is specified in angular units.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive rotation is the follower moving around the rotational axis following the right-hand rule.

Universal base and follower Body connector ports

Parameters

Toggle between the Axes and Advanced panels with the tabs.
The entries on the Axes pane are required. Each DoF primitive in Universal has an entry line. These lines specify the direction of the axes of action of the DoFs that the Universal represents.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Universal block: revolute primitives R1, R2.

Axis of action [x y z]

Enter here as a three-component vector the directional axes defining the allowed motions of these primitives and their corresponding DoFs:

- Revolute: axis of rotation

The default vectors are shown in the dialog box above. The axis is a directed vector whose overall sign matters.

To prevent singularities and simulation errors, the two revolute axes cannot be parallel.

Universal

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Parameters

Axes Advanced
「 Mark as the preferred cut joint
One joint in each closed loop topology will be cut automatically. Check box to make this joint preferred for cutting.

Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also
Gimbal, Revolute
See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

Variable Mass \& Inertia Actuator

Purpose

Library
Description

Varies the mass and inertia on a body at a specific body coordinate system as a function of time (not including thrust force or torque)

Sensors \& Actuators
The Variable Mass \& Inertia Actuator block allows you to vary the mass m and/or inertia tensor \boldsymbol{I} of the Body to which it is connected. The general form of Newton's second law for linear or angular motion is
(mass or inertia) *acceleration = external force or torque
This block externally varies the leftmost parameter in this law of motion with a Simulink signal.

Note The Variable Mass \& Inertia Actuator does not apply any thrust forces or torques associated with the Body's mass loss or gain. Such thrust effects would occur on the left-hand side of the force or torque law as terms proportional to the time derivatives of the mass or inertia tensor, $\mathrm{d} m / \mathrm{dt}$ or $\mathrm{d} \mathbf{I} / \mathrm{dt}$, multiplied by the related thrust velocities. You must separately apply such thrust forces or torques to the Body with Body Actuators.

How the Actuator Varies a Body's Mass and Inertia Tensor

You connect the Variable Mass \& Inertia Actuator block to the original, user-supplied Body at a Body coordinate system (CS). You can connect multiple Variable Mass \& Inertia Actuators to a single Body, each Actuator at a separate Body CS port. If Body CS ports are lacking, open the Body dialog and create them as needed.

At each Body CS so connected, the Variable Mass \& Inertia Actuator creates an invisible body. The attachment is equivalent to connecting another Body with a Weld, except that the other body's mass properties vary with time. This invisible body has a time-varying mass and/or symmetric inertia tensor supplied by the external Simulink signal. The center of gravity coordinate system (CG CS) of the invisible body is identical to the attached Body CS. The inertia tensor of the invisible body is evaluated at this CS, in this coordinate system's axes.

Variable Mass \& Inertia Actuator

SimMechanics creates a combined or composite body, made of the invisible, time-varying body created by the Actuator and the original, user-supplied Body. The total mass of the composite body is the sum of the visible Body and the invisible body's masses. The CG of this composite body is recomputed at each time step. The inertia tensor of the composite body is formed at each time step by combining the inertia tensors of the visible Body and the invisible body. The combined inertia tensor is then evaluated at the composite body's new CG.

The time-varying mass and inertia tensor of the invisible body must satisfy these requirements:

- The mass and principal inertial moments can be positive, negative, or zero.

The only restriction is that the total mass and the principal inertial moments of the composite body be nonnegative.

- The time-varying inertia tensor of the invisible body must be symmetric.

You can mix variable mass and/or variable inertia tensor actuation.

Actuation

Variable mass alone

Variable inertia tensor alone

Variable mass and inertia tensor combined

Effect on Connected Body

Adds a time-varying point mass at the attached Body CS

Adds time-varying inertia tensor at the attached Body CS without changing the composite body's total mass

Adds invisible body with time-varying mass and inertia tensor at the attached Body CS

What Does Not Vary in the User-Supplied Body

While the invisible, attached body and the invisible composite body have time-varying mass properties, you do not see any visible changes in the original Body that you are actuating. The mass properties in its dialog do not change.

If you are visualizing the varying-mass/inertia actuated Body as an equivalent ellipsoid, the ellipsoid is rendered using the static data in the Body dialog itself. The ellipsoid rendering ignores the effect of any Variable Mass \& Inertia Actuators attached to the Body. See "Rendering Body Shapes in SimMechanics" on page 6-5.

Variable Mass \& Inertia Actuator

Dialog Box and Parameters

The dialog box has one active area, Actuation.

Actuation

You can apply a variable mass, a variable inertia tensor, or both, to a body.
If you apply both, you need to bundle the variable mass and inertia tensor into a 10 -component signal, in the order shown in the dialog box.

Mass

Select the check box to apply an external time-varying mass from the input Simulink signal. In the pull-down menu to the right, select units for this time-varying mass. The default is kg (kilograms).

Inertia tensor

Select the check box to apply an external time-varying inertia tensor from the input Simulink signal. In the pull-down menu to the right, select units for this time-varying inertia tensor. The default is $\mathrm{kg}-\mathrm{m}^{2}$ (kilogram-meters ${ }^{2}$).

Variable Mass \& Inertia Actuator

The Simulink input signal has the following components. For variable mass or inertia tensor actuation alone, omit the missing components.

Time-varying mass (scalar)	Time-varying inertia tensor (9-vector): $\left(I_{11}, I_{21}, I_{31}, I_{12}, \ldots\right)$

Corbin, H. C., and P. Stehle, Classical Mechanics, Second Edition, New York, Dover Publications, 1994 (original edition, 1960), chapters 2, 5, and 9.

Goldstein, H., Classical Mechanics, Second Edition, Reading, Massachusetts, Addison-Wesley, 1980, chapters 4 and 5.

Piscane, V. L., and R. C. Moore, eds., Fundamentals of Space Systems, Johns Hopkins University/Applied Physics Laboratory Series, New York, Oxford University Press, 1994, chapters 3, 4, and 5.

See Also
Body, Body Actuator, Weld
See "Varying a Body's Mass and Inertia Tensor" on page 4-45 for more on varying the mass and inertia tensor of a body.

Purpose

Library
Description

Specify a linear combination of the linear and angular velocities of two bodies as a function of time

Constraints \& Drivers
The Velocity Driver block drives a linear combination of the projected translational and angular velocities of two Bodies. The velocities are projected by inner products on to constant vectors you specify.

Let $\mathbf{v}_{\mathrm{B}}, \mathbf{v}_{\mathrm{F}}$ be the two body velocity vectors and $\omega_{\mathrm{B}}, \omega_{\mathrm{F}}$ be the two body angular velocity vectors. Let $\mathbf{c}_{\mathrm{B}}, \mathbf{c}_{\mathrm{F}}, \mathbf{d}_{\mathrm{B}}, \mathbf{d}_{\mathrm{F}}$ be constant vectors. The subscripts ' B ' and ${ }^{\prime} F$ ' refer to base and follower bodies. The Velocity Driver block specifies the linear combination Ω :

$$
\Omega=\mathbf{c}_{\mathrm{B}} \cdot \mathbf{v}_{\mathrm{B}}+\mathbf{d}_{\mathrm{B}} \cdot \omega_{\mathrm{B}}-\mathbf{c}_{\mathrm{F}} \cdot \mathbf{v}_{\mathrm{F}}-\mathbf{d}_{\mathrm{F}} \cdot \omega_{\mathrm{F}}=\Omega(t=0)+f(t)
$$

as a function of time $f(t)$. You specify the vectors $\mathbf{c}_{\mathrm{B}}, \mathbf{c}_{\mathrm{F}}, \mathbf{d}_{\mathrm{B}}, \mathbf{d}_{\mathrm{F}}$. You also connect a Driver Actuator block to the Velocity Driver.

The Simulink input signal into the Driver Actuator specifies the time-dependent driving function $f(t)$ and its first two derivatives, as well as their units. If you do not actuate Velocity Driver, this block acts as a time-independent constraint that freezes the constraint linear combination at its initial value $\Omega(t=0)$ during the simulation.

Drivers restrict relative degrees of freedom (DoFs) between a pair of bodies as specified functions of time. Locally in a machine, they replace a Joint as the expression of the DoFs. Globally, Driver blocks must occur topologically in closed loops. Like Bodies connected to a Joint, the two Bodies connected to a Drivers are ordered as base and follower, fixing the direction of relative motion.

You can also connect a Constraint \& Driver Sensor to any Driver block and measure the reaction forces/torques between the driven bodies.

Velocity Driver

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection

Parameters

Current base

When you connect the base (B) connector port on the Velocity Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Velocity Driver base and follower Body connector ports" figure.

Velocity Driver

Current follower

When you connect the follower (F) connector port on the Velocity Driver block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Velocity Driver base and follower Body connector ports" figure.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Driver Actuator and Constraint \& Driver Sensor blocks to this Driver. The default is 0 .

To activate the Driver, connect a Driver Actuator.
The base (B)-follower (F) Body sequence determines the sense of positive motion. Positive translation is the follower moving in the direction of the translation axis. Positive rotation is the follower rotating in the right-handed sense about the rotation axis.

Base Body connector port

Velocity Driver base and follower Body connector ports

Parameters Angular velocity units

From the pull-down menu, choose the common units for all angular velocities. The default is deg/s (degrees/second).

The vectors \mathbf{d}_{B} and \mathbf{d}_{F} implicitly carry the units conversion of length/angle. The driving function $f(t)$ has the linear velocity units that you set in the Driver Actuator block that you connect to Velocity Driver. If the $f(t)$ units differ from the units set in Linear velocity units in this dialog box, the vectors \mathbf{d}_{B} and \mathbf{d}_{F} implicitly carry the additional units conversion.

Linear velocity units

From the pull-down menu, choose the common units for all linear velocities. The default is m / s (meters/second).

Velocity Driver

The driving function $f(t)$ has the linear velocity units that you set in the Driver Actuator block that you connect to the Velocity Driver. If the $f(t)$ units differ from the units set here, the vectors \mathbf{c}_{B} and \mathbf{c}_{F} implicitly carry the units conversion.

Velocity coefficients for base

Under [x y z], enter the Angular velocity and Linear velocity coefficient vectors for the base Body. These are the components of \mathbf{d}_{B} and \mathbf{c}_{B}, respectively. The defaults are $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

In the pull-down menus, choose the coordinate systems (WORLD or BASE) whose coordinate axes the vectors \mathbf{d}_{B} and \mathbf{c}_{B} are oriented with respect to. The defaults are WORLD.

The vectors \mathbf{d}_{B} and \mathbf{c}_{B} carry the implicit units conversion to convert all velocities to the common linear velocity units of $f(t)$ that you set in the connected Driver Actuator block.

Velocity coefficients for follower

Under [xy z], enter the Angular velocity and Linear velocity coefficient vectors for the follower Body. These are the components of \mathbf{d}_{F} and \mathbf{c}_{F}, respectively. The defaults are $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.

In the pull-down menus, choose the coordinate systems (WORLD or FOLLOWER) whose coordinate axes the vectors \mathbf{d}_{F} and \mathbf{c}_{F} are oriented with respect to. The defaults are WORLD.

The vectors \mathbf{d}_{F} and \mathbf{c}_{F} carry the implicit units conversion to convert all velocities to the common linear velocity units of $f(t)$ that you set in the connected Driver Actuator block.

See Also | Angle Driver, Constraint \& Driver Sensor, Driver Actuator, Parallel |
| :--- |
| Constraint | Constraint

See "Modeling Constraints and Drivers" on page 4-35 for more on restricting DoFs with Drivers.

See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on using drivers in closed loops.

See "Constraining and Driving Motion" on page 9-4.

Purpose
 Represent a joint with no DoFs

Library

Joints
Description

The Weld block represents a joint with no degrees of freedom (DoFs). The two Bodies connected to either side of the Weld block are locked rigidly to one another, with no possible relative motion.

You must connect each side of the Joint block to a Body block at a Body coordinate system (CS) point. The Weld block is assembled: the origins of these Body CSs must lie along the primitive axes, within assembly tolerances. But the Body CS origins on either side of the Joint do not have to be spatially collocated points.

You must connect any Joint block to two and only two Body blocks, and Joints have a default of two connector ports for connecting to base and follower Bodies.

A Joint block represents only the abstract relative motion of two bodies, not the bodies themselves.

Weld

Dialog Box and Parameters

The dialog box has two active areas, Connection parameters and Parameters.

Connection
 Parameters

Current base

When you connect the base (B) connector port on the Weld block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Weld base and follower Body connector ports" figure.

The base Body is automatically connected to the joint primitive W in the primitive list in Parameters.

Current follower

When you connect the follower (F) connector port on the Bushing block to a Body CS Port on a Body, this parameter is automatically reset to the name of this Body CS. See the following "Weld base and follower Body connector ports" figure.

The follower Body is automatically connected to the joint primitive W in the primitive list in Parameters.

Number of sensor/actuator ports

Using this spinner menu, you can set the number of extra connector ports needed for connecting Joint Sensor blocks to this Joint. The default is 0 .

You cannot actuate a Weld joint, and a Weld joint undergoes no motion. A Joint Sensor measures zero motion, but in general nonzero reaction forces, at this joint.

Base Body connector port

Weld base and follower Body connector ports

Parameters Toggle between the Axes and Advanced panels with the tabs.

The entries on the Axes pane are inactive for Weld. This block has no DoF primitives.

Name - Primitive

The primitive list states the names and types of joint primitives that make up the Weld block: a rigid primitive W representing no motion.

Axis of action [x y z]

This field is inactive.

Reference csys

Using the pull-down menu, choose the coordinate system (World, the base Body CS, or the follower Body CS) whose coordinate axes the vector axis of action is oriented with respect to. This CS also determines the absolute meaning of forces/torques and motion along/about the joint axis. The default is WORLD.

The Advanced pane is optional. You use it to control the way SimMechanics interprets the topology of your schematic diagram.

Weld

```
Parameters
    Axes Advanced
    \Mark as the preferred cut joint
    One joint in each closed loop topology will be cut automatically.
    Check box to make this joint preferred for cutting.
```


Mark as the preferred cut joint

In a closed loop, one and only one joint is cut during the simulation. SimMechanics does the cutting internally and automatically.

If you want this particular joint to be weighted preferentially for cutting during the simulation, select the check box. The default is unselected.

See Also

Distance Driver

See "Modeling Joints" on page 4-17 for more on representing DoFs with Joints.
See "Checking Machine Topology" on page 4-68 and "How SimMechanics Works" on page 5-14 for more on closed loops and cutting.

SimMechanics Command Reference

This table indicates the tasks performed by the commands described in this chapter.

Command

import_physmod
mech_stateVectorMgr

Purpose

Generate a Simulink model from a Physical Modeling XML file Display and set machine state vector

import_physmod

Purpose

Synopsis

Description

Input Arguments

Generate a SimMechanics model from a Physical Modeling XML file
import_physmod('filename.xml') generates a SimMechanics model from a Physical Modeling XML file filename.xml. The .xml extension for the filename argument is optional. For a computer-aided design (CAD)-generated XML file, the name of the generated model is the same as the original CAD assembly, regardless of the name of the XML file.
import_physmod('-license') displays the third-party license for use of this command. This license information also appears automatically the first time you use the command.
import_physmod('filename.xml', option1, value1, option2, value2, ...) generates the SimMechanics model filename.mdl from filename.xml using the specified option-value pairs when importing. The .xml extension for the filename argument is optional. See "Input Arguments" following.

You use this command to generate a dynamic Simulink block diagram model from a Physical Modeling XML file.
The Physical Modeling XML file can be one created by exporting a CAD assembly, for example. You export the Physical Modeling XML file that represents the CAD assembly from your CAD platform through a CAD translator.

The second and final step is to import this Physical Modeling XML file into SimMechanics with the import_physmod command. The command creates a SimMechanics model from the information in the Physical Modeling XML file. You can then save, rename, edit, and run the model.

The input file must be a Physical Modeling XML file. The input filename must have the .xml extension, but the .xml extension in the filename command argument is optional.

import_physmod

The command options and values follow.

Option	Value
'Direction'	Diagram growth direction: either 'LR' (diagram grows from left to right; default) or 'TB' (diagram grows from top to bottom). Default: 'LR'
'FontSize'	Font size in pixels for the block labels. Default: 10

Output Model

The output model name is the same name as the original CAD assembly from which the Physical Modeling XML file was exported and is independent of the name of the XML file itself. You need to save the model once import_physmod has generated it. You can change the model's name when you save it.

The import_physmod command generates a new SimMechanics model by opening a model window and populating it with blocks.

- The entire model diagram is encapsulated in a subsystem.
- Subsystems below the top level encapsulate subassemblies from the original CAD assembly.
- The machine includes one Ground and one Machine Environment block.
- The other SimMechanics blocks are Bodies and Joints only, corresponding to the parts and mates of the original CAD assembly from which the Physical Modeling XML file was exported.
- A special Root Body occurs at the top of the main hierarchy and the top of each subsystem. A Root Body has no mass and no inertia and does not move.
- The Joints are Custom Joints if they carry degrees of freedom and Welds if they do not.

Create the Physical Modeling XML file for a CAD assembly called assembly by exporting the assembly from your CAD platform. Call the file assembly.xml.

Then enter
import_physmod('assembly.xml')
at the command line. The model generation status is indicated by a progress bar. A model window opens, and SimMechanics generates the block diagram in

import_physmod

a model file called assembly.mdl. You can then save, rename, edit, and run the model.

You can generate the same model, but with point size 14 for the block labels, by entering
import_physmod('assembly.xml','FontSize',14)
at the command line.

See Also

See "Introducing CAD Translation" on page 7-2 for more details and instructions on generating the Physical Modeling XML file for a CAD assembly and importing it into SimMechanics to generate a model.

Purpose

Synopsis

Description

Display and set the machine state with a state vector manager
You must call mech_stateVectorMgr with one argument, the pathname or handle of any block in the machine whose state you want:

```
MachineState = mech_stateVectorMgr('pathname')
MachineState = mech_stateVectorMgr('handle')
```

You obtain the pathname and handle with the Simulink gcb and gcbh commands.

You can also call mech_stateVectorMgr with an indirect call to the block pathname or handle. Select one of the SimMechanics blocks in the machine and enter one of these commands:

```
MachineState = mech_stateVectorMgr(gcb)
MachineState = mech_stateVectorMgr(gcbh)
```

The command mech_stateVectorMgr returns an object MachineState.
The state manager object includes only the state of a machine made of SimMechanics blocks. Simulink associates the machine to one of the machine's Ground blocks.

The total number of state components is

$$
\begin{aligned}
\mathrm{N}= & 2^{*}(\# \text { of prismatics }+\# \text { of revolutes })+8^{*}(\# \text { of sphericals }) \\
& +(\# \text { of Point-Curve Constraints }),
\end{aligned}
$$

not including any motion-actuated joint primitives. The machine state consists of all the linear/angular positions and velocities of all degrees of freedom (DoFs) in the machine:

- Prismatic and revolute joint primitives each have two state components, a position and a velocity.
- Spherical joint primitives each have eight state components, a quaternion and a quaternion derivative.
- A joint primitive actuated by a Joint Initial Condition Actuator is counted like other joint primitives. But because the JICA externally specifies such a primitive's initial position and velocity, the primitive has an active FixedAtT_0 flag.

mech_stateVectorMgr

- Point-Curve Constraints each have one predictor state component, the arc parameter velocity of the point along the curve.

Joint Primitives Not Counted As Degrees of Freedom

- If the joint primitive is motion actuated with a Joint Actuator block, that joint primitive is not counted in the machine state components.
- The weld primitive contributes no state components.

Input Arguments

Output Arguments

There is one input argument. The argument must be a SimMechanics block's full pathname or handle, or an indirect call to the pathname or handle using the commands gcb or gcbh.

The state manager obtained from the command references the machine to which this block belongs. The full path name starts with the model name and continues through any subsystem hierarchy:

```
pathname = modelname/subsystem1/etc.../blockname
```

You can obtain the pathname or handle of any block by selecting that block in a window and entering gcb or gcbh at the command line.

You can combine these steps into one step with an indirect pathname or handle call. Select a SimMechanics block in the model window and enter either command:

```
mech_stateVectorMgr(gcb)
mech_stateVectorMgr(gcbh)
```

instead.
The output of mech_stateVectorMgr is a MachineState object of the MECH.StateVectorMgr class.

A machine is a connected set of SimMechanics blocks. Each machine must have at least one Ground block. Simulink chooses one of the Ground blocks as the machine root. This root serves as a proxy for the whole machine.

The MachineState object has four properties.

Property	Variable Type	Content
MachineState.MachineName	string	'modelname/subsystem1/etc $\ldots /$ rootgroundblock'
MachineState.X	1-by- N real array	$\left[\begin{array}{llll}0 & 0 & \ldots & 0\end{array}\right]$
MachineState.BlockStates	array of N block state managers	Joint primitive and Point-Curve Constraint states
MachineState.StateNames	cell array of N strings	Names of joint primitives and Point-Curve Constraints

Querying the State Manager Object

Once you define a MachineState object, you can query the properties individually by entering full property name:

MachineState.MachineName
MachineState. X

Examples

Some examples illustrate the use of the state vector manager.

Mechanical State Vector with One Primitive

Open the demo model mech_spen. Select a SimMechanics block and enter machinestate $=$ mech_stateVectorMgr(gcb)

mech_stateVectorMgr

at the command line. The command returns
machinestate =
MECH.StateVectorMgr

```
MachineName: 'mech_spen/Ground'
    X: [0 0]
BlockStates: [1x1 MECH.RPJointStateMgr]
    StateNames: {2x1 cell}
```

The first line in the object is the class and the last four are the properties. The model mech_spen contains one Joint block (a Revolute), with two states (angle and angular velocity).

Query individual properties. Entering machinestate.machinename returns

```
mech_spen/Ground
```

referring to the one Ground block in the model. Entering machinestate. X returns

```
0
```

indicating a two-component state vector ($N=2$, position and velocity).
Entering machinestate.blockstates returns
MECH.RPJointStateMgr
BlockName: 'Revolute'
Primitive: 'R1'
Position: 0
PositionUnits: 'rad'
Velocity: 0
VelocityUnits: 'rad/s'
FixedAtT_0: 'off'
There are one Joint and no Point-Curve Constraints, and the Joint is a Revolute. So there is only one state manager of class MECH. RPJointStateMgr. This property gives detailed Joint information: block name, primitive name, position and velocity values and units, and the absence of initial condition actuators.

Entering machinestate.statenames returns

```
'Revolute:R1:Position'
'Revolute:R1:Velocity'
```

the names of the Joint block, the joint primitive, and the states.

Mechanical State Vector with Multiple Primitives

Construct an unnamed model with Ground and Body blocks connected by a Telescoping Joint. Then select one of the blocks and enter machinestate = mech_stateVectorMgr (gcb) at the command line. Simulink returns
machinestate =
MECH.StateVectorMgr
MachineName: 'untitled/Ground'
X: [0 0 O O O O O O O 0]
BlockStates: [2x1 MECH.BlockStateMgr]
StateNames: \{10x1 cell\}
The unnamed model is still associated with its Ground block. There are two primitives, a spherical and a prismatic, and hence 10 components in the state vector. To see those primitive names, enter machinestate. statenames to obtain

```
'Telescoping:S:Quaternion:1'
'Telescoping:S:Quaternion:2'
'Telescoping:S:Quaternion:3'
'Telescoping:S:Quaternion:4'
'Telescoping:P1:Position'
'Telescoping:S:Quaternion_dot:1'
'Telescoping:S:Quaternion_dot:2'
'Telescoping:S:Quaternion_dot:3'
'Telescoping:S:Quaternion_dot:4'
'Telescoping:P1:Velocity'
```

The quaternion and the prismatic position make the first five components, while the quaternion derivative and prismatic velocity make the last five.

mech_stateVectorMgr

See Also
Point-Curve Constraint, Prismatic, Revolute, Spherical
See "Counting Degrees of Freedom" on page 4-71.
See "Trimming Mechanical Models" on page 8-16 and "Linearizing Mechanical Models" on page 8-28.
In Simulink, see gcb, gcbh, gcs.

Technical Conventions

Mechanical Conventions and Abbreviations

Right-Hand Rule Is Assumed

For rotational motion and vector cross products $\boldsymbol{a} \times \boldsymbol{b}$, the right-hand (RH) rule is always assumed.

Vector Multiplication

Scalar-vector products and matrix-vector multiplication are denoted by $\boldsymbol{a} * \boldsymbol{b}$ and $M * \boldsymbol{v}$, respectively.

Common Abbreviations

These are the abbreviations of mechanical terms most commonly used in this guide.

Abbreviation	Meaning
CG	Center of gravity
CS	Coordinate system
DoF	Degree of freedom
RF	Reference frame

Glossary Terms

Special mechanical or SimMechanics terms are frequently hyperlinked online to entries in the Glossary.

Mechanical Units

SimMechanics accepts any mixture of MKS (SI), cgs, and English units.

Quantity	MKS (SI)	cgs	English
Length	meter (m)	centimeter (cm)	inch (in), foot (ft)
Time	second (s)	second (s)	second (s)
Mass	kilogram (kg)	gram (g)	slug (slug)
Velocity	meter/second (m/s)	centimeter/second (cm / s)	inch/second (in/sec), foot/second (ft/sec)
Acceleration (Gravity)	$\begin{aligned} & \text { meter/second }{ }^{2} \\ & \left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { centimeter/second }{ }^{2} \\ & \left(\mathrm{~cm} / \mathrm{s}^{2}\right) \end{aligned}$	inch $/$ second $^{2}\left(\mathrm{in} / \mathrm{s}^{2}\right)$, foot $/$ second $^{2}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$
Force	Newton (N)	dyne (dyn)	pound (lb)
Angle	radian (rad), degree (deg)	radian (rad), degree (deg)	radian (rad), degree (deg)
Inertia	kilogram-meter ${ }^{2}\left(\mathrm{~kg}-\mathrm{m}^{2}\right)$	$\begin{aligned} & \text { gram-centimeter }{ }^{2} \\ & \left(\mathrm{~g}-\mathrm{cm}^{2}\right) \end{aligned}$	slug-foot ${ }^{2}$ (slug-ft ${ }^{2}$)
Angular velocity	radian/second (rad/s), degree/second (deg/s)	radian/second (rad/s), degree/second (deg/s)	radian $/$ second ($\mathrm{rad} / \mathrm{s}$), degree/second (deg/s)
Angular acceleration	$\begin{aligned} & \text { radian } / \text { second }{ }^{2}\left(\mathrm{rad} / \mathrm{s}^{2}\right), \\ & \text { degree } / \mathrm{second}^{2}\left(\mathrm{deg} / \mathrm{s}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { radian } / \text { second }{ }^{2}\left(\mathrm{rad} / \mathrm{s}^{2}\right), \\ & \text { degree } / \mathrm{second}^{2}\left(\mathrm{deg} / \mathrm{s}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { radian } / \text { second }^{2}\left(\mathrm{rad} / \mathrm{s}^{2}\right), \\ & {\text { degree } / \mathrm{second}^{2}}^{\left(\mathrm{deg} / \mathrm{s}^{2}\right)} \end{aligned}$
Torque	Newton-meter (N-m)	dyne-centimeter (dyn-cm)	pound-foot (lb-ft)

A Technical Conventions

Bibliography

[1] Gill, P. E., W. Murray, and M. Wright, Practical Optimization, San Diego, Academic Press, 1981.
[2] Goldstein, H., Classical Mechanics, Second Edition, Reading, Massachusetts, Addison-Wesley, 1980.
[3] Goodman, L. E., and W. H. Warner, Statics, Mineola, New York, Dover Publications, 2001 (original edition, 1964).
[4] Goodman, L. E., and W. H. Warner, Dynamics, Mineola, New York, Dover Publications, 2001 (original edition, 1963).
[5] Haug, E. J., Computer-Aided Kinematics and Dynamics of Mechanical Systems, Volume 1: Basic Methods, Boston, Allyn \& Bacon, 1989.
[6] José, J. V., and E. J. Saletan, Classical Dynamics: A Contemporary Approach, Cambridge, Cambridge University Press, 1998.
[7] JPL DARTS Web page on spatial operator algebra: http://dshell.jpl.nasa.gov/references.html.
[8] Marrin, C., and B. Campbell, Teach Yourself VRML 2 in 21 Days, Indianapolis, Indiana, Sams.net, 1997.
[9] Marsden, J. E., and T. S. Ratiu, Introduction to Mechanics and Symmetry, Second Edition, New York, Springer-Verlag, 1999.
[10] Meriam, J. L., Engineering Mechanics, Fourth Edition, two volumes, New York, John Wiley and Sons, 1997.
[11] Murray, R. M., Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, Boca Raton, Florida, CRC Press, 1994.
[12] von Schwerin, R., MultiBody System SIMulation: Numerical Methods, Algorithms, and Software, Berlin, Springer-Verlag, 1999.

- For an assembled revolute joint, the two Body CS origins must be collocated. The two Bodies rotate relatively about the same axis.

For an assembled joint with multiple revolute primitives, the two Body CS origins must be collocated.

- For an assembled spherical joint, the two Body CS origins must be collocated at the spherical primitive's pivot point. The two Bodies pivot relatively about this common origin.

You specify an assembly tolerance for assembled joints, the maximum dislocation distance allowed between all pairs of assembled Body CS origins and the maximum angle of misalignment between all pairs of assembled Body motion axes. If the distance dislocations and/or axis misalignments in an assembled joint grow larger than the assembly tolerance, the simulation stops with an error.

See also assembly tolerance, Body CS, collocation, disassembled joint, joint, and primitive joint.
assembly
assembly
tolerance
Representation of a machine in computer-aided design. An assembly includes parts (bodies with full geometric, mass, and inertia tensor information), as well as mates representing the parts' degrees of freedom.
Every assembly has a fundamental root. Assemblies can also have one or more subassemblies branching off the main assembly at single point.
Assembly specifications typically also include design tolerances and how subassemblies move and how they are connected to the main assembly.

See also body, computer-aided design (CAD), degree of freedom (DoF), fundamental root, inertia tensor, mass, mate, part, and subassembly.
Determines how closely an assembled joint must be collocated and aligned. An assembled joint is connected on either side to Body coordinate systems (CSs) on two Bodies and restricts the relative configurations and motions of those Body CSs.

The assembly tolerances set the maximum dislocation of Body CS origins and maximum misalignment of motion axes allowed in assembled joints during the simulation.

- For assembled prismatic primitives, each pair of Body CS origins must lie in the subspace defined by the prismatic axes. Each pair of Bodies translates along these common axes.

Glossary-2

- For assembled revolute primitives, each pair of Body CS origins must be collocated and their respective rotational axes aligned. Each pair of Bodies rotates about these common axes.
- For an assembled spherical primitive, the pair of Body CS origins must be collocated. The two Bodies pivot about this common origin.

SimMechanics attempts to assemble all joints in your machine at the start of simulation, including initially disassembled joints. If it cannot, the simulation stops with an error.

If the two Body CSs separate or the joint axes misalign in a way that makes their connecting assembled joint primitives no longer respect the assembly tolerances, the simulation stops with an error.

See also assembled joint, Body CS, collocation, disassembled joint, and joint.
axis-angle rotation

A representation of a three-dimensional spherical rotation as a rotation axis vector $\mathbf{n}=\left(n_{\mathrm{x}}, n_{\mathrm{y}}, n_{\mathrm{z}}\right)$ of unit length ($\left.\mathbf{n} * \mathbf{n}=n_{\mathrm{x}}{ }^{2}+n_{\mathrm{y}}{ }^{2}+n_{\mathrm{z}}{ }^{2}=1\right)$ and a rotation angle θ. Define the rotation axis by the vector \mathbf{n}; rotate about that axis by θ using the right-hand rule.

The rotation axis direction is equivalent to specifying two independent angles; θ is the third independent angle making up the rotation.

In VRML, you represent body rotations by a vector signal [$n n_{\mathrm{x}} n_{\mathrm{y}} n_{\mathrm{z}} \theta$].
See also degree of freedom (DoF), Euler angles, primitive joint, quaternion, right-hand rule, rotation matrix, and VRML.
base (base body) The point from which the joint is directed. The joint directionality runs from base to follower body.

Joint directionality sets the direction and the positive sign of all joint position/angle, motion, and force/torque data.
See also body, directionality, follower (follower body), and right-hand rule.

body

The basic element of a mechanical system or machine. It is characterized by

- Its mass properties (mass and inertia tensor)
- Its position and orientation in space
- Any attached Body coordinate systems

Bodies are connected to one another by joints，constraints，or drivers．Bodies carry no degrees of freedom．

You can attach to a Body block any number of Body coordinate systems（CSs）． All SimMechanics Bodies automatically maintain a minimum of one Body CS at the body＇s center of gravity（CG）．The Body block has special axis triad CS ports $⿴$ ，instead of the open，round connector ports \circ ，to indicate the attached Body CSs．

See also actuator，adjoining CS，Body CS，center of gravity（CG），convex hull， coordinate system（CS），degree of freedom（DoF），equivalent ellipsoid，inertia tensor，joint，local CS，mass，and sensor．
Body CS A local coordinate system（CS）attached to a body，carried along with that body＇s motion．In general，bodies accelerate as they move，and therefore Body CSs define noninertial reference frames．

You can attach any number of Body CSs to a Body block，and you can choose where to place the Body CS origins and how to orient the Body CS axes．The Body block has special axis triad CS ports ⿴囗十介 instead of the open，round connector ports，to give you access to these Body CSs for connecting Joint， Sensor，and Actuator blocks．

Every Body block has an automatic，minimum Body CS at its center of gravity （CG）．By default，it also has two other Body CSs for connection to adjacent Joints．The origin and axis orientation of each Body CSs once set by the user during Body configuration，are interpreted as fixed rigidly in that body during the simulation．

See also body，center of gravity（CG），convex hull，coordinate system（CS）， ground，grounded CS，local CS，reference frame（RF），and World．

CAD See computer－aided design（CAD）．
center of gravity （CG）

The center of gravity or center of mass of a extended body is the point in space about which the entire body balances in a uniform gravitational field．For translational dynamics，the body＇s entire mass can be considered as if concentrated at this point．
Every Body block has an automatic，minimum Body coordinate system（CS） with its origin at the CG－the CG CS．This origin point and the Body CS coordinate axes remain fixed rigidly in the body during the simulation．

Glossary－4

	See also body, Body CS, degree of freedom (DoF), inertia tensor, kinematics, and primitive joint.		
CG			
closed loop			
system		\quad	See center of gravity (CG).
:---			

connector port
constrained joint

constraint

A special anchor for a connection line. Each SimMechanics block has one or more open round SimMechanics connector ports O for connecting to other SimMechanics blocks. You must connect these round ports only to other SimMechanics round ports. When an open connector port \bigcirc is attached to a connection line, the Port changes to solid •

A special Connection Port block is provided in the Library Browser to create a round SimMechanics connector port for an entire subsystem on that subsystem's boundary.

See also actuator, connection line, and sensor.
A composite joint with one or more internal constraints restricting the joint's primitives.

An example is the Screw block, which has a prismatic and a revolute primitive with their motions in fixed ratio. Only one of these degrees of freedom is independent.

See also degree of freedom (DoF), joint, and primitive joint.
A restriction among degrees of freedom imposed independently of any applied forces/torques. A constraint removes one or more independent degrees of freedom, unless that constraint is redundant and restricts degrees of freedom that otherwise could not move anyway. Constraints can also create inconsistencies with the applied forces/torques that lead to simulation errors.

Constraints are kinematic: they must involve only coordinates and/or velocities. Higher derivatives of coordinates (accelerations, etc.) are determined by the Newtonian force/torque laws and cannot be independently constrained.

Constraints can be holonomic (integrable into a form involving only coordinates) or nonholonomic (not integrable; that is, irreducibly involving velocities).

The relationship specified by a constraint can be an explicit function of time (rheonomic) or not (scleronomic). In SimMechanics, scleronomic constraints are called Constraints, and rheonomic constraints are called Drivers.

SimMechanics Constraint/Driver blocks are attached to pairs of Body blocks.
See also body, degree of freedom (DoF), directionality, and driver.
convex hullcoordinatesystem (CS)

CS

degree of freedom (DoF)

	See also body, coordinate system (CS), dynamics, joint, and kinematics.
directionality	
The directionality of a joint, constraint, or driver is its direction of forward	
motion.	
The joint directionality is set by the order of the joint's connected bodies and	
the direction of the joint axis vector. One body is the base body, the other the	
follower body. The joint direction runs from base to follower, up to the sign of	
the joint axis vector. Reversing the base-follower order or the joint axis vector	
direction reverses the forward direction of the joint.	
Joint directionality sets the direction and the positive sign of all joint	
position/angle, motion, and force/torque data.	

Glossary-8

dynamics

equivalent ellipsoid

In SimMechanics, you specify the driver function of time in a dialog box in terms of an input Simulink signal from a Driver Actuator.

SimMechanics Driver blocks are attached to pairs of Body blocks.
See also actuator, body, constraint, directionality, and degree of freedom (DoF).
A forward dynamic analysis of a mechanical system specifies

- The topology of how bodies are connected
- The degrees of freedom (DoFs) and constraints among DoFs
- All the forces/torques applied to the bodies
- The mass properties (masses and inertia tensors) of the bodies
- The initial condition of all DoFs:
- Initial linear coordinates and velocities
- Initial angular coordinates and velocities

The analysis then solves Newton's laws to find the system's motion for all later times.

Inverse dynamics is the same, except that the system's motion is specified and the forces/torques necessary to produce this motion are determined.

Dynamics is distinguished from kinematics by explicit specification of applied forces/torques and body mass properties.
See also constraint, degree of freedom (DoF), inertia tensor, kinematics, mass, and topology.

The equivalent ellipsoid of a body is the homogeneous solid ellipsoid, centered at the body's center of gravity, with the same principal moments of inertia and principal axes as the body. A homogeneous solid ellipsoid is the simplest body with three distinct principal moments.
Every body has a unique equivalent ellipsoid, but a given homogeneous ellipsoid corresponds to an infinite number of other, more complicated, bodies. The rotational dynamics of a body depend only on its equivalent ellipsoid (which determines its principal moments and principal axes), not on its detailed shape.

In SimMechanics, the equivalent ellipsoid is an option for visualizing a body.

	See also body, convex hull, dynamics, inertia tensor, principal axes, and principal inertial moments.
Euler angles	A representation of a three-dimensional spherical rotation as a product of three successive independent rotations about three independent axes by three independent (Euler) angles.
	See also axis-angle rotation, degree of freedom ($D o F$), primitive joint, quaternion, right-hand rule, and rotation matrix.
fixed part	A "fixed" part of a computer-aided design subassembly is a part that is welded to the subassembly root. That is, it cannot move relative to the subassembly root.
	See also computer-aided design (CAD), root body, subassembly, and subassembly root.
follower (follower body)	The point to which the joint is directed. The joint directionality runs from base to follower body.
	Joint directionality sets the direction and the positive sign of all joint position/angle, motion, and force/torque data.
	See also base (base body), body, directionality, and right-hand rule.
fundamental root	A point in a computer-aided assembly that does not move. All translational and rotational motion of parts in the assembly reference this unmoving point.
	See also assembly, computer-aided design (CAD), part, and root body.
ground	A ground or ground point is a special point fixed at rest in the absolute or global inertial World reference frame.
	Each ground has an associated grounded coordinate system (CS). The grounded CS's origin is identical to the ground point, and its coordinate axes are always parallel to the coordinate axes of World.
	See also body, coordinate system (CS), grounded CS, machine, and World.
grounded CS	A local CS attached to a ground point. It is at rest in World, but its origin is wherever the ground point is and therefore in general shifted with respect to the World CS origin. The coordinate axes of a grounded CS are always parallel to the World CS axes.

Glossary-10

The World coordinate axes are defined so that:
$+x$ points right
$+y$ points up (gravity in $-y$ direction)
$+z$ points out of the screen, in three dimensions
You automatically create a Grounded CS whenever you set up a Ground block.
See also adjoining CS, body, Body CS, coordinate system (CS), ground, local CS, and World.

inertia tensor The inertia or moment of inertia tensor of an extended rigid body describes its

 internal mass distribution and the body's angular acceleration in response to an applied torque.Let V be the body's volume and $\rho(r)$ its mass density, a function of position r within the body. Then the components of the inertia tensor \boldsymbol{I} are:

$$
I_{i j}=\int_{V} d V\left[\delta_{i j}|\boldsymbol{r}|^{2}-r_{i} r_{j}\right] \rho(\boldsymbol{r})
$$

This tensor is a real, symmetric 3-by-3 matrix or equivalent MATLAB expression.
SimMechanics always assumes the inertia tensor of a body is evaluated in that body's center of gravity coordinate system (CG CS). That is, the origin is set to the body's CG and the coordinate axes are the CG CS axes.
Because the CG CS of a Body block is fixed rigidly in the body during simulation, the values of the inertia tensor components do not change as the body rotates.
See also body, Body CS, equivalent ellipsoid, mass, principal axes, and principal inertial moments.

initial condition actuator

An initial condition actuator gives you a way to move a system's degrees of freedom nondynamically to prepare a system for dynamical integration, in a way consistent with all constraints.
In SimMechanics, the initial conditions are applied to a joint primitive.
See also actuator, dynamics, and kinematics.

joint \begin{tabular}{l}
Represents one or more mechanical degrees of freedom between two bodies.

Joint blocks connect two Body blocks in a SimMechanics schematic. Joints

have no mass properties such as a mass or an inertia tensor.

A joint primitive represents one translational or rotational degree of freedom

or one spherical (three rotational degrees of freedom in angle-axis form).

Prismatic and revolute primitives have motion axis vectors. A weld primitive

has no degrees of freedom.

A primitive joint contains one joint primitive. A composite joint contains more

than one joint primitive.

Joints have a directionality set by their base-to-follower Body order and the

direction of the joint primitive axis. The sign of all position/angle, motion, and

force/torque data is determined by this directionality.

See also actuator, assembled joint, base (base body), body, composite joint,

constrained joint, constraint, degree of freedom (DoF), directionality,

disassembled joint, follower (follower body), ground, inertia tensor, massless

connector, primitive joint, and sensor.

Ainematics

A kinematic analysis of a mechanical system specifies topology, degrees of
freedom (DoFs), motions, and constraints, without specification of applied
forces/torques or the mass properties of the bodies.

The machine state at some time is the set of all
\end{tabular}

Glossary-12

machine
machine precision constraint

You define Body CSs when you configure the properties of a Body. A Grounded CS is automatically defined when you represent a ground point by a Ground block.

A grounded CS is always at rest in the World reference frame. The origin of this Grounded CS is the same point as the ground point and therefore in general not the same as the World CS origin.

A Body CS is fixed rigidly in the body and carried along with that body's motion. To indicate an attached coordinate system, a Body block has a special axis triad CS port 囚in place of the open, round connector port O.

See also body, Body CS, coordinate system (CS), grounded CS, reference frame (RF), and World.

In a SimMechanics model, a machine is a complete, connected block diagram representing one mechanical system. It is topologically isolated from any other machine in your model and has at least one ground.

A SimMechanics model has one or more machines.
See also ground and topology.
A machine precision constraint is a constraint numerically implemented on the constrained degrees of freedom to the precision of your computer processor's arithmetic.

The precision to which the constraint is maintained depends on scale or the physical system of units.
See also constraint, stabilizing constraint, and tolerancing constraint.
mass
The proportionality between a force on a body and the resulting translational acceleration of that body.

Let V be the body's volume and $\rho(r)$ its mass density, a function of position r within the body. Then the mass m is:

$$
m=\int_{V} d V \rho(\boldsymbol{r})
$$

The mass is a real, positive scalar or equivalent MATLAB expression.
A body's mass is insensitive to choice of reference frame, coordinate system origin, or coordinate axes orientation.

massless connector

mate

open system

part

See also body and inertia tensor.
A massless connector is equivalent to two joints whose respective primitive axes are spatially separated by a fixed distance. You can specify the gap distance and the axis of separation. The space between the degrees of freedom is filled by a rigid connector of zero mass.

You cannot actuate or sense a massless connector.
See also disassembled joint and joint.
A mate represents one or more degrees of freedom of the parts in a computer-aided design assembly.

After translation into a SimMechanics model, degrees of freedom are represented by joints.

See also assembly, computer-aided design (CAD), degree of freedom (DoF), joint, and part.

You can disconnect an open system into two separate systems by cutting no more than one joint.

Such systems can be divided into two types:

- An open chain is a series of bodies connected by joints and topologically equivalent to a line.
- An open tree is a series of bodies connected by joints in which at least one body has more than two joints connected to it. Bodies with more than two connected joints define branch points in the tree. A tree can be disconnected into multiple chains by cutting the branch points.

The end body of a chain is a body with only one connected joint.
See also closed loop system and topology.
A part represents a body in a computer-aided design (CAD) assembly. In CAD representations, a part typically includes full geometric, as well as mass and inertia tensor, information about a body.

Body degrees of freedom are represented in CAD by mates.
After translation into a SimMechanics model, parts are represented by bodies.
See also assembly, body, computer-aided design (CAD), degree of freedom (DoF), inertia tensor, mass, and mate.

Glossary-14

$\left.\left.\begin{array}{ll}\text { physical tree } & \begin{array}{l}\text { You obtain the physical tree representation of a machine topology from the full } \\ \text { machine topology by removing actuators and sensors and cutting each closed } \\ \text { loop once. The physical tree retains bodies, joints, constraints, and drivers. }\end{array} \\ \text { See also closed loop system, open system, spanning tree, and topology. }\end{array}\right\} \begin{array}{l}\text { A primitive joint expresses one degree of freedom (DoF) or coordinate of motion, } \\ \text { if this DoF is a translation along one direction (prismatic joint) or a rotation } \\ \text { about one fixed axis (revolute joint). }\end{array}\right\}$
with $q^{*} q=1$. The vector $\mathbf{n}=\left(n_{\mathrm{x}}, n_{\mathrm{y}}, n_{\mathrm{z}}\right)$ is a three-component vector of unit length: $\mathbf{n} * \mathbf{n}=1$. The unit vector \mathbf{n} specifies the axis of rotation. The rotation angle about that axis is θ and follows the right-hand rule.

The axis-angle representation of the rotation is just [$\mathbf{n} \theta$].
See also axis-angle rotation, degree of freedom (DoF), Euler angles, primitive joint, right-hand rule, and rotation matrix.
reference frame (RF)

The state of motion of an observer.
An inertial RF is a member of a set of all RFs moving uniformly with respect to one another, without relative acceleration.
An RF is necessary but not sufficient to define a coordinate system (CS). A CS which requires an origin point and a oriented set of three orthogonal axes.

See also coordinate system (CS), local CS, and World.

RF A reference frame ($R F$).

right-hand rule The right-hand rule is the standard convention for determining the sign of a rotation: point your right thumb into the positive rotation axis and curl your fingers into the forward rotational direction.

See also degree of freedom (DoF), directionality, and joint.
root body
After a computer-aided design (CAD) assembly is translated into a SimMechanics model, a block sequence Ground - Root Weld - Root Body or Root Body - Root Weld - Fixed Body represents the CAD assembly's fundamental or subassembly root, respectively.

In CAD assemblies, the fundamental or subassembly root represents a fixed point relative to which all part motion or subassembly part motion is measured.

See also assembly, body, computer-aided design (CAD), fixed part, fundamental root, ground, subassembly, and subassembly root.
rotation matrix

A representation of a three-dimensional spherical rotation as a 3-by-3 real, orthogonal matrix $R: R^{\mathrm{T}} R=R R^{\mathrm{T}}=I$, where I is the 3-by-3 identity and R^{T} is the transpose of R.

$$
R=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
$$

In general, R requires three independent angles to specify the rotation fully. There are many ways to represent the three independent angles. Here are two:

- You can form three independent rotation matrices R_{1}, R_{2}, R_{3}, each representing a single independent rotation. Then compose the full rotation matrix R with respect to fixed coordinate axes (like World) as a product of these three: $R=R_{3}{ }^{*} R_{2}{ }^{*} R_{1}$. The three angles are Euler angles.
- You can represent R in terms of an axis-angle rotation $\mathbf{n}=\left(n_{\mathrm{x}}, n_{\mathrm{y}}, n_{\mathrm{z}}\right)$ and θ, with $\mathbf{n} * \mathbf{n}=1$. The three independent angles are θ and the two needed to orient n . Form the antisymmetric matrix ω :

$$
\hat{\omega}=\left[\begin{array}{ccc}
0 & -n^{z} & n_{y} \\
n_{z} & 0 & -n_{x} \\
-n_{y} & n_{x} & 0
\end{array}\right]
$$

Then Rodrigues' formula simplifies R :

$$
R=\exp (\hat{\omega} \theta)=\hat{1}+\hat{\omega} \sin \theta+\hat{\omega}^{2}(1-\cos \theta)
$$

See also axis-angle rotation, degree of freedom (DoF), Euler angles, primitive joint, quaternion, and right-hand rule.
sensor

Measures the motion of, or forces/torques acting on, a body or joint. A sensor can also measure the reaction forces in a constraint or driver constraining a pair of bodies.
In SimMechanics, a Sensor block has an open round SimMechanics connector port \circ for connecting with a Body or Joint block and an angle bracket > Simulink outport for connecting with normal Simulink blocks, such as a Sinks block like Scope.
See also actuator, body, connector port, constraint, driver, joint, and primitive
joint.
spanning tree You obtain the spanning tree representation of a machine topology from the full machine topology by removing everything except bodies and joints and cutting each closed loop once.

See also closed loop system, open system, physical tree, and topology.
stabilizing
constraint
Numerically implements a constraint by modifying the dynamics of a system so that the constraint manifold is attractive, without changing the constrained solution. This constraint solver type is computationally the most efficient.

The precision to which the constraint is maintained depends on scale or the physical system of units.

See also constraint, machine precision constraint, and tolerancing constraint.
stiction actuator Applies discontinuous friction forces to a joint primitive according to the relative velocity of one body with the other body.

If this relative velocity drops below a specified threshold, the relative motion ceases and the bodies or joints become locked rigidly to one another by static friction.

Above that threshold, the bodies or joints move relative to one another with kinetic friction.

See also actuator, composite joint, dynamics, joint, and primitive joint.

subassembly

subassembly root

Representation of a subset of machine parts and mates in computer-aided design (CAD).

A subassembly is attached to its parent CAD assembly at a single branching point.

A subassembly is either flexible or rigid. That is, its parts either can move with respect to one another or they cannot.

See also assembly, computer-aided design (CAD), mate, part, and subassembly root.

A point in a computer-aided design (CAD) subassembly that does not move relative to the assembly point off of which it branches. All translational and rotational motion of parts in the subassembly reference this unmoving point.

Glossary-18

See also assembly, computer-aided design (CAD), fundamental root, part, root body, and subassembly.

tolerancing constraint

topology

VRML
A tolerancing constraint is numerically implemented on constrained degrees of freedom only up to a specified accuracy and/or precision.

This accuracy/precision is independent of any accuracy/precision limits on the solver used to integrate the system's motion, although constraints cannot be maintained to greater accuracy than the accuracy of the solver.

The precision to which the constraint is maintained depends on scale or the physical system of units.
Tolerancing constraints are useful in realistic simulation of slippage ("slop" or "play") in constraints.

See also constraint, machine precision constraint, and stabilizing constraint.
The global connectivity of the elements of a machine.
For mechanical models, the elements are bodies and the connections are joints, constraints, and drivers. Two topologies are equivalent if you can transform one system into another by continuous deformations and without cutting connections or joining elements.

An open system has no closed loops.

- An open chain is topologically equivalent to a line; and each body is connected to only two other bodies, if the body is internal, or one other body if it is at an end.
- An open tree has one or more branch points. A branch point is where an internal body is connected to more than two other bodies. A tree can be disconnected into multiple chains by cutting at the branch points.

A closed loop system has one or more closed loops. The number of closed loops is equal to the minimum number of joints, minus one, that must be cut to dissociate a system into two disconnected systems.

An actual system can have one of these primitive topologies or can be built up from multiple primitive topologies.
See also body, closed loop system, joint, machine, and open system.
Virtual Reality Modeling Language, an open, Web-oriented ISO standard for defining three-dimensional virtual worlds in multimedia and the Internet. The

Virtual Reality Toolbox uses VRML to create and populate virtual worlds with user-defined bodies.

In VRML, body rotations are represented in the axis-angle form. The SimMechanics RotationMatrix2VR block converts rotation matrices to the equivalent axis-angle forms.

See also axis-angle rotation and the Web3D Consortium at www.web3d.org.

World

In SimMechanics, World is both the absolute inertial reference frame ($R F$) and absolute coordinate system (CS) in that RF. World has a fixed origin and fixed coordinate axes that cannot be changed.
The World coordinate axes are defined so that:
$+x$ points right
$+y$ points up (gravity in $-y$ direction)
$+z$ points out of the screen, in three dimensions
See also adjoining CS, coordinate system (CS), ground, grounded CS, and reference frame ($R F$).

A

abbreviations A-2
actuators
body 4-42
driver 4-53
initial condition 4-53
joint 4-47
stiction 4-48
analysis modes
choosing 5-7
overview 1-20
See also Forward Dynamics mode, Inverse Dynamics mode, Kinematics mode, Trimming mode
Angle Driver block 9-7
animation
See visualization
assembling joints
See joint
assembly
CAD
See computer-aided design
assembly tolerances
defined 4-23
setting 5-5
axis-angle rotation 3-9

B

base body 4-21
Bearing block 9-10
block libraries 9-2
viewing 2-2
bodies
actuating 4-42
body coordinate systems 4-10
modeling 4-10
rigid 4-10
sensing 4-63
Bodies block library 2-4
Body Actuator block 9-26
Body block 9-15
body coordinate systems
adding and deleting 4-16
Body CS ports 4-4
Body Sensor block 9-29
Body Spring \& Damper block 9-33
Bushing block 9-36

C

CAD
See computer-aided design
CAD translator 7-2
closed loops
choosing cut joint 4-33
constraint or driver block in 4-37
cutting 4-33
disassembled joint in 4-30
code generation 5-26
commands
import_physmod 10-2
mech_stateVectorMgr 10-5
computed force 4-65
computer-aided design (CAD)
building assemblies 7-6
editing models derived from 7-16
exporting assemblies into XML 7-10
generating CAD-based models 7-14
getting CAD translator help 7-12
importing assemblies into SimMechanics 7-14
installing CAD translators 7-3
models derived from 7-15
troubleshooting assembly export errors 7-13
troubleshooting models derived from 7-18
uninstalling CAD translators 7-5
connection lines 4-4
Connection Port block 9-41
connector ports 4-4
Constraint \& Driver Sensor block 9-42
constraint solvers 5-5
constraint tolerances
defined 5-6
setting 5-6
constraints
directionality 4-36
holonomic 4-35
modeling 4-35
nonholonomic 4-35
rheonomic 4-35
scleronomic 4-35
sensing 4-65
Constraints \& Drivers block library 2-5
Continuous Angle block 9-46
convex hulls 6-8
coordinate systems 3-4
transformations 3-4
Custom Joint block 9-49
cutting joints
automatic in closed loops 4-33
marking cut joint 5-11
Cylindrical block 9-56

D

damper
See spring-damper
degrees of freedom apparent vs. independent 4-71
counting 4-71
relative 4-17
rotational 4-18
spherical 4-18
translational 4-18
weld 4-18
demo models 2-6
Disassembled Cylindrical block 9-60
disassembled joints
See joints
Disassembled Prismatic block 9-65
Disassembled Revolute block 9-69
Disassembled Spherical block 9-73
Distance Driver block 9-76
Driver Actuator block 9-79
drivers
actuating 4-53
directionality 4-36
modeling 4-35
sensing 4-65
dynamics 1-21

Index-2

E

equivalent ellipsoids 6-5
errors
See simulation, fixing errors
Euler angles 3-11
Euler's equations 8-4
exporting CAD assemblies
See computer-aided design
See XML

F

follower body 4-21
Force Elements block library 2-6
Forward Dynamics mode
overview 1-21
friction
pure kinetic friction 4-44
See also stiction

G

Gear Constraint block 9-82
Gimbal block 9-86
gravity
as an external signal 5-3
setting in a machine 5-3
Ground block 9-91
grounds
connecting to Machine Environment 4-8
ground point 4-8
grounded coordinate system 4-9
modeling 4-8

I

importing CAD assemblies
See computer-aided design
See XML
import_physmod command 10-2
inertia tensor
defined 4-10
time-varying 4-45
initial conditions
setting 4-53
In-Plane block 9-94
internal forces
represented by force elements 4-58
via sensor-actuator feedback 4-61
Inverse Dynamics mode
finding forces from motion 8-6
overview 1-21
setting up motion actuation 8-6
simulating in 8-11

J

Joint Actuator block 9-99
Joint Initial Condition Actuator block 9-104
Joint Sensor block 9-108
Joint Spring \& Damper block 9-115
Joint Stiction Actuator block 9-119
joints
actuating 4-47
assembly restrictions 4-23
automatic assembly of disassembled 4-31
cutting, automatic 4-33
cutting, manual 4-33
joints, continued
directionality 4-21
disassembled joints 4-30
joint primitives 4-18
manual assembly of 4-23
massless connectors 4-26
modeling 4-17
primitive axis 4-20
primitive vs. composite 4-18
sensing 4-65
Joints block library 2-5
Disassembled Joints block sublibrary 2-5
Massless Connectors block sublibrary 2-5

K

kinematics
machine state 3-2
overview 1-21
representing motion 3-6
Kinematics mode
finding forces from motion 8-6
overview 1-22
setting up motion actuation 8-6
simulating in 8-7

L

Linear Driver block 9-126
linearization
linearizing SimMechanics models 8-28
with closed-loop systems 8-34
with open-topology systems 8-29

M

machine
dimensionality 5-4
distinguished in a model 5-2
representing with blocks 4-2
Machine Environment block
block reference page 9-129
Constraints pane 9-133
Linearization pane 9-134
Parameters pane 9-131
Visualization pane 9-135
mass
defined 4-10
time-varying 4-45
massless connectors
See joints
mech_stateVectorMgr command 10-5
Mechanical Branching Bar block 9-137
mechanical settings
machine environment 5-3
simulation diagnostics 5-11

N

Newton's equations 8-3
Newton's laws 1-21

P

Parallel Constraint block 9-141
Planar block 9-144
Point-Curve Constraint block 9-149
Prismatic block 9-158

Index-4

Q

quaternion 3-10

R

reaction force 4-65
reference frames 3-4
Revolute block 9-162
Revolute-Revolute block 9-166
Revolute-Spherical block 9-171
rotation matrix 3-10
RotationMatrix2VR block 9-176
rotations
converting representations 3-11
representing 3-9

S

Screw block 9-178
sensors
body 4-63
constraint \& driver 4-65
joint 4-65
Sensors \& Actuators block library 2-5
signal lines 4-4
simulation
fixing errors 5-16
internal SimMechanics steps 5-14
Simulink
choosing solver 5-12
Configuration Parameters dialog 5-10
ports 4-4
setting solver tolerances 5-13
signal lines 4-4
singularities
mitigating 5-24
setting robust handling 5-9

Six-DoF block 9-183
spanning tree 4-68
Spherical block 9-187
Spherical-Spherical block 9-192
spring-damper 4-58
stiction
classical Coulomb theory 9-123
mixed static-kinetic friction 4-51
modeling 4-48
See also friction
subsystem
in SimMechanics 4-6
masking 4-7

T

technical conventions A-2
Telescoping block 9-196
tolerances
See assembly tolerances
See constraint tolerances
topology
invalid 4-70
model 4-68
validity of 4-70
Trimming mode
overview 1-22
simulating in 8-16
with constrained systems 8-23
with unconstrained systems 8-17
troubleshooting
See computer-aided design
See simulation, fixing errors

U

units, mechanical A-3
Universal block 9-200
Utilities block library 2-6

V

Variable Mass \& Inertia Actuator block 9-205
Velocity Driver block 9-209
virtual reality
custom interface to SimMechanics 6-27
with computer-aided design (CAD) 6-28
visualization
changing the display refresh rate 6-23
choosing body shape 6-5
controlling the simulation 6-23
machine display symbols 6-18
overview 1-22
perspective and window size 6-21
recording animations 6-25
rendering vs. animation 6-3
saving display settings 6-15
setting up 6-2
special SimMechanics symbols 6-11
special SimMechanics tool bar 6-15
speeding up the animation 6-24
standard MATLAB Graphics controls 6-12

W

warnings
controlling warning messages 5-11
Weld block 9-213
World coordinate system 3-4

X

XML
exporting from CAD 7-10
importing into SimMechanics 7-14
Physical Modeling format 7-2
See also computer-aided design

Index-6

[^0]: Diagnostics
 Enable warnings and automatically cut joints
 V Warn if machine contains redundant constraints
 「 Warn if number of initial constraints is unstable
 Γ Mark automatically cut joints

[^1]: - "Custom Visualization with Virtual Reality" on page 6-27

[^2]: Exporting a CAD Assembly into a Physical Modeling XML File

[^3]: Disassembled cylindrical axes of follower (blue) and base (red)

[^4]: Massless Connector between Spherical and Spherical Joints

